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The main purpose of this work is to extend te famous Lyapunov theorem of the linear
explicit differential equations (continuous or discrete), for studying the spectrum of some im-
plicit stationary differential equations by using the properties of the spectral theory for the
corresponding operator pencil and an appropriate tronsformation. The results obtained can be
applied to study the stabilizations for certain implicit controlled systems.

In the present paper, we consider the following implicit stationary differential equation of
the form:

Ax′(t) = Bx(t), t ≥ t0, (1)

with initial condition:
x(t0) = x0,

where A and B are linear bounded operators acting in the same Hilbert space H also, the
operator A is not necessarly invertible. We suppose that for each complex number λ, we have:

x(t) = eλ(t−t0)x0,

which is a solution for (1) satisfies (λA − B)x0 = 0. At first, we denote by L the pencil of
bounded operators A and B such that L(λ) = λA−B then, we recall that our main objective
is to generalize the Lyapunov theorem for some equations such (1), and we use the obtained
results to study the stabilization of a controlled implicit system described by the general form:

Ax′(t)−Bx(t) = Cu(t), u ∈ U ⊂ H, t0 ≤ t ≤ T. (2)

Here u is control and T is a time, the operator C is also bounded on H. In the sequel, we need
the following definitions.

Definition 1. The complex number λ ∈ C is said to be a regular point of the pencil λA−B,
if the operator (λA−B)−1 exists and it is bounded. The set of all regular points is denoted by
ρ(A,B), and its complement σ(A,B) = C\ρ(A,B) is called the spectrum of the pencil λA−B.
The set of all eigen-values of the pencil λA−B is denoted by:

σp(A,B) = {λ ∈ C\∃v 6= 0, (λA−B)v = 0}. (3)

Definition 2. The implicit controlled system 2 is said to be exponentially stabilizable by
means of a direct feedback u(t) = Kx(t), if the given system:

Ax′(t)− (B + CK)x(t) = 0, t0 ≤ t ≤ T (4)

is exponentially stable (K suppose to be a linear bounded operator in the Hilbert space H).
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Theorem 1. Suppose taht the spectrum σ(A,B) of the pencil of bounded operators A and
B is in the left half-plane. Then, for any non-negative uniform operator G � 0, there exists
an operator W � 0 such that:

B∗WA+ A∗WB = G.

Theorem 2. In finite dimentional Hilbert spaces, the following assertions are equivalent:

• The sytem (1) is exponentially stabilizable,

• σ(A,B + CD) = σp(A,B + CD) ⊂ {λ ∈ C, Rel(λ) < 0},

• There exists a non-negative de

nite matrix W � 0 such that:

(B + CD)∗WA+ A∗W (B + CD) = G� 0.

Remark 1. We note that the similar results for discrete implicit systems are obtained in [7].
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