A. A. Batahri ${ }^{1}$, A. Attar ${ }^{2}$
${ }^{1}$ Laboratoire d'Analyse Nonlinéaire et Mathématiques Appliquées, Department of Mathematics, University Abou Bakr Belkaid, Tlemcen, Algeria
${ }^{2}$ Laboratoire d'Analyse Nonlinéaire et Mathématiques Appliquées, Department of Mathematics, University Abou Bakr Belkaid, Tlemcen, Algeria batahriamira@gmail.com, ahm.attar@yahoo.fr,

We study the existence and the asymptotic behavior of sequence of positive solutions to the following nonlocal elliptic problem

$$
\left\{\begin{align*}
(-\Delta)_{p}^{s} u+u^{m-1} & =\lambda u^{q-1} & & \text { in } \Omega \tag{1}\\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { in } \mathbb{R}^{N} \backslash \Omega
\end{align*}\right.
$$

where $s \in(0,1), \Omega \subset \mathbb{R}^{N},(N>p s)$ is bounded domain, $q \in\left[p, p_{s}^{*}\right)$, the real parameter $\lambda>0$ and m sufficiently large such that

$$
p<q \leq p_{s}^{*}<m
$$

The operator $(-\Delta)_{p}^{s}$ is the fractional p-Laplacian defined by

$$
(-\Delta)_{p}^{s} u(x):=\text { P.V. } \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+p s}} d y, \quad s \in(0,1), \quad p \geq 2
$$

if $p=2$ is the linear fractional Laplacian $(-\Delta)^{s}$.
Motivated by [1] and the study of nonlocal problems involving fractional p-Laplacian operator [2], [3], we prove existence results in the fractional Sobolev space defined by

$$
X^{s}:=\left\{u \in W_{0}^{s, p}(\Omega): \int_{\Omega}|u|^{m}<\infty\right\} .
$$

Applying variational methods. Indeed, we assume a different hypotheses on the value of q to prove the existence results:

- Case 1: $p<q<m$
- Case 2: $p<q \leq p_{s}^{*}<m$

Definition 1. We say that $u \in X^{s}(\Omega)$ is a weak solution of equation (1) if u satisfies

$$
\begin{equation*}
\iint_{D_{\Omega}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{N+p s}} d x d y+\int_{\Omega} u^{m-1} v=\lambda \int_{\Omega} u^{q-1} v, \forall v \in X^{s}(\Omega) . \tag{1}
\end{equation*}
$$

Now we state our first existence result as the following theorem.
Theorem 1. Let $s \in(0,1), N>p s$ and $p<q \leq p_{s}^{*}$. Then, there exists $\underline{\lambda}>\lambda_{*}>0$ such that for each $\lambda>\underline{\lambda}$ there is $m_{0}>p_{s}^{*}$ such that for every $m \geq m_{0}$, equation (1) has at least two positive nontrivial solutions $z_{m}, u_{m} \in X_{m}^{s}(\Omega)$ and $z_{m} \not \equiv u_{m}$.

Also, we provide a crucial regularity result about L^{∞} boundedness of weak solution for equation (1) to be able to study the asymptotic behavior of the solutions found when $m \rightarrow+\infty$. This asymptotic behavior will be determined by an interesting limit problem, given in the following Theorem.

Theorem 2. Assume that $\lambda>\lambda_{*}$ and let $\left\{u_{m}\right\}_{m}$ (resp. $\left\{z_{m}\right\}_{m}$) be a sequence of solutions. Then, there exists $u, z \in \mathcal{K}:=\left\{u \in W_{0}^{s, p}(\Omega): 0 \leq u \leq 1\right\}$ such that $u_{m} \rightharpoonup u\left(\right.$ resp. $\left.z_{m} \rightharpoonup z\right)$ strongly in $W_{0}^{s, p}(\Omega)$ and strongly in every Lebesgue space. Moreover, there exists $\mathcal{G}_{u}, \mathcal{G}_{z} \in L^{\infty}(\Omega)$ and u, z satisfy

$$
\left\{\begin{align*}
(-\Delta)_{p}^{s} w+\mathcal{G}_{w} & =\lambda w^{q-1} & & \text { in } \Omega \tag{2}\\
w & \geq 0 & & \text { in } \Omega \\
w & =0 & & \text { in } \mathbb{R}^{N} \backslash \Omega
\end{align*}\right.
$$

where $0<\mathcal{G}_{w} \leq \lambda, \mathcal{G}_{w} \not \equiv 0$, and $\mathcal{G}_{w}(1-w)=0$, a.e Ω.

1. Boccardo L, Maia L, Pellacci B. Asymptotic behaviour of positive solutions of semilinear elliptic problems with increasing powers. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2022, 152, No. 5, 1233-1250.
2. Begona B, Ireneo P, Stefano V. Some remarks about the summability of nonlocal nonlinear problems. Advances in Nonlinear Analysis, 2015, 4, No. 2, 91-107.
3. Torres C. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}, 2014$, arXiv:1412.3392.
