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The aim of this article is to construct invariant regions of a generalized m -component
reaction-diffusion system with tridiagonal symmetric Toeplitz diffusion matrix and homoge-
neous boundary conditions and polynomial growth for the nonlinear reaction terms. Using the
eigenvalues and eigenvectors of the diffusion matrix and the parabolicity conditions. So we
prove the asymptotic behavior of solutions in C

(
Ω
)
×C

(
Ω
)
× ...×C

(
Ω
)
and apply Lyapunov

type stability techniques. A key ingredient in this analysis is a result which establishes that
the orbits of the dynamical system are precompact in C

(
Ω
)
×C

(
Ω
)
× ...×C

(
Ω
)
. As a conse-

quence of Arzela-Ascoli theorem, this will be satisfied if the orbits are, for example, uniformly
bounded in C1

(
Ω
)
×C1

(
Ω
)
× ...×C1

(
Ω
)
for t > 0. We consider the following m-equations of

reaction-diffusion system, with m ≥ 2:
∂U
∂t
− Am∆U = F (U) in Ω× (0,+∞),

∂ηU = 0 on ∂Ω× (0,+∞),
U(0, x) = U0(x) = (u01, ..., u

0
m)T on Ω,

where Ω is an open bounded domain of class C1 in Rn, the vectors U and F and the matrix
Am are defined as:

U = (u1, ..., um)T , F = (f1, ..., fm)T ,

Am =


a1 b1 0 · · · 0

c1 a2 b2
. . . ...

0 c2 a3
. . . 0

... . . . . . . . . . bm−1
0 · · · 0 cm−1 am


the constants (ai)

m
i=1, (bi)

m−1
i=1 et (ci)

m−1
i=1 are supposed to be strictly positive and satisfy the

condition
cos2(

π

m+ 1
) <

aiai+1

(bi + ci)
2

which reflects the parabolicity of the system and implies at the same time that the diffusion
matrix Am is positive defnite.
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Theorem 1. ( See [3] ) Let T > 0. A function u : [0, T ]→ X is a weak solution of{
ut (t) = Lu (t) + f (u (t))
u (0) = u0,

(1)

on [0, T ] if and only if f (u (t)) ∈ L1 (0, T,X) and u satisfies the variation of constants formula

u (t) = S (t)u0 +

∫ t

0

S (t− s) f (u (s)) ds, for all s ∈ [0, T ] .

Theorem 2. (See [1]) Let f : X → X be locally Lipschitz continuous. Then for u0 ∈ X,
(1) has a unique weak solution defined in a maximal interval of existence [0, Tmax), Tmax > 0,
u ∈ C ([0, Tmax) , X). Moreover, if Tmax <∞, then

lim
t→Tmax

‖u (t)‖ = +∞.

Now, let us recall the following definition.

Definition 1. (See [2]) Let {G (t)}t≥0 be a nonlinear semigroup on a compact metric space
X. If (u01, u

0
2, . . . , u

0
m) ∈ X, O (u01, u

0
2, . . . , u

0
m) = {G (t) (u01, u

0
2, . . . , u

0
m)}t≥0 is the orbit through

(u01, u
0
2, . . . , u

0
m) .

Then the w-limite set for (u01, u
0
2, . . . , u

0
m) is defined by

w
(
u01, u

0
2, . . . , u

0
m

)
= {(u1, u2, . . . , um) ∈ X : ∃tn →∞ :

G (tn)
(
u01, u

0
2, . . . , u

0
m

)
→ (u1, u2, . . . , um)}.

So in this article, we give some the main results.
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