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Let a finite interval (a, b) ⊂ R and parameters {m, n+ 1, r, l} ⊂ N, 1 ≤ p ≤ ∞, be given.
We consider linear boundary-value problem

(Ly)(t) := y(r)(t) +
r∑

j=1

Ar−j(t)y
(r−j)(t) = f(t), t ∈ (a, b), (1)

By = c. (2)

Here, Ar−j(·) ∈ (W n
p )

m×m, f(·) ∈ (W n
p )

m, c ∈ Cl, and linear continuous operator

B : (W n+r
p )m → Cl (3)

are arbitrarily chosen; y(·) ∈ (W n+r
p )m is unknown.

The solutions of equation (1) fill the space (W n+r
p )m if its right-hand side f(·) runs through

the space (W n
p )

m. Hence, the condition (2) with operator (3) is generic condition for this equa-
tion. It includes all known types of classical boundary conditions and numerous nonclassical
conditions containing the derivatives (in general fractional) of an order greater than r. If l < r,
then the boundary conditions are underdetermined. If l > r, then the boundary conditions are
overdetermined.

With the problem (1), (2), we associate the linear operator

(L,B) : (W n+r
p )m → (W n

p )
m × Cl. (4)

Theorem 1. The linear operator (4) is a bounded Fredholm operator with index mr − l.

Consider family of matrix Cauchy problems with the initial conditions

Y
(r)
k (t) +

r∑
j=1

Ar−j(t)Y
(r−j)
k (t) = Om, t ∈ (a, b),

Y
(j−1)
k (a) = δk,jIm, j ∈ {1, . . . , r}.

By [BYk], we denote the numerical (m× l) – matrix, in which j-th column is result of the
action of B on j-th column of Yk(·).

Definition 1. A block numerical matrix

M(L,B) := ([BY0] , . . . , [BYr−1]) ∈ Crm×l

is characteristic matrix to problem (1), (2).

It consists of r rectangular block columns [BYk(·)] ∈ Cm×l.
If B = 0, then M(L,B) = Orm×l for all L.
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Theorem 2. The dimensions of kernel and cokernel of the operator (4) are equal to the
dimensions of kernel and cokernel of matrix M(L,B), respectively:

dimker(L,B) = dimker
(
M(L,B)

)
,

dim coker(L,B) = dim coker
(
M(L,B)

)
.

Corollary 1. The operator (4) is invertible if and only if l = mr and the square matrix
M(L,B) is nondegenerate.

Example 1. Consider a linear one-point boundary-value problem

Ly(t) := y′(t) + Ay(t) = f(t), t ∈ (a, b),

By =
n−1∑
k=0

αky
(k)(a) = c.

Here, A is a constant (m×m) – matrix, f(·) ∈ (W n−1
p )m, αk ∈ Cl×m, c ∈ Cl, y(·) ∈ (W n

p )
m,

B : (W n
p )

m → Cl, (L,B) : (W n
p )

m → (W n−1
p )m × Cl.

By Y (·) ∈ (W n
p )

m×m we denote the unique solution of the Cauchy matrix problem

Y ′(t) + AY (t) = Om, t ∈ (a, b), Y (a) = Im.

Then the matrix-valued function Y (·) and its k-th derivative will have the following form:

Y (t) = exp
(
− A(t− a)

)
, Y (a) = Im;

Y (k)(t) = (−A)k exp
(
− A(t− a)

)
, Y (k)(a) = (−A)k, k ∈ N.

Substituting these values into the boundary condition, we have

M(L,B) =
n−1∑
k=0

αk(−A)k.

It follows from Theorem 1 that ind(L,B) = ind(M(L,B)) = m− l.
Therefore, by Theorem 2, we obtain

dimker(L,B) = dimker

(
n−1∑
k=0

αk(−A)k
)

= m− rank

(
n−1∑
k=0

αk(−A)k
)
,

dim coker(L,B) = −m+ l + dimker

(
n−1∑
k=0

αk(−A)k
)

= l − rank

(
n−1∑
k=0

αk(−A)k
)
.
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