On ELLIPTIC EQUATIONS IN L_{p}-SOBOLEV SPACES OF GENERALIZED SMOOTHNESS

A.V. Anop
Institute of Mathematics, Kyiv, Ukraine
Mathematical Institute, Georg-August University, Göttingen, Germany
anop@imath.kiev.ua

We discuss the solvability of elliptic equations and elliptic boundary problems on compact C^{∞}-manifolds in the Sobolev spaces $H_{p}^{s, \varphi}$ whose generalized smoothness is given by the number $s \in \mathbb{R}$ and function parameter $\varphi \in \Upsilon$, with the number exponent p satisfying $1<p<\infty$. The set Υ consists of all positive functions $\varphi \in C^{\infty}([1, \infty))$ that satisfy the following two conditions: (i) φ varies slowly at ∞ in the sense of Karamata, i.e. $\varphi(\lambda t) / \varphi(t) \rightarrow 1$ as $t \rightarrow \infty$ whenever $\lambda>0$; (ii) for each $m \in \mathbb{N}$ there is a number $c_{m}>0$ that $t^{m}\left|\varphi^{(m)}(t)\right| \leq \varphi(t)$ whenever $t \geq 1$.

By definition, the complex linear space $H_{p}^{s, \varphi}\left(\mathbb{R}^{n}\right)$ consists of all tempered distributions w on \mathbb{R}^{n} such that $w_{s, \varphi}:=F^{-1}\left[\langle\xi\rangle^{s} \varphi(\langle\xi\rangle)(F w)(\xi)\right]$ belongs to the Lebesgue space $L_{p}\left(\mathbb{R}^{n}\right)$. Here, as usual, F denotes the Fourier transform, and $\langle\xi\rangle:=\left(1+|\xi|^{2}\right)^{1 / 2}$ whenever $\xi \in \mathbb{R}^{n}$. The Banach space $H_{p}^{s, \varphi}\left(\mathbb{R}^{n}\right)$ is endowed with the norm $\left\|w, H_{p}^{s, \varphi}\left(\mathbb{R}^{n}\right)\right\|:=\left\|w_{s, \varphi}, L_{p}\left(\mathbb{R}^{n}\right)\right\|$. If Ω is an open nonempty subset of \mathbb{R}^{n}, then the Banach space $H_{p}^{s, \varphi}(\Omega)$ consists, by definition, of the restrictions of all distributions $w \in H_{p}^{s, \varphi}\left(\mathbb{R}^{n}\right)$ to Ω and is endowed with the norm $\left\|v, H_{p}^{s, \varphi}(\Omega)\right\|:=$ $\inf \left\|w, H_{p}^{s, \varphi}\left(\mathbb{R}^{n}\right)\right\|$ where the infimum is taken over all $w \in H_{p}^{s, \varphi}\left(\mathbb{R}^{n}\right)$ such that $w=v$ in Ω.

Let M be a compact oriented manifold of class C^{∞} and dimension $n \geq 1$. As usual, ∂M is the boundary of M, and $M^{\circ}:=M \backslash \partial M$, we admitting the $\partial M=\emptyset$ case. Choose a finite collection of local maps $\pi_{j}: \bar{\Pi}_{j} \leftrightarrow U_{j}$ on M, with $j=1, \ldots, \varkappa$. Here, $\left\{U_{j}\right\}$ is a covering of M by open sets, and each Π_{j} denotes either \mathbb{R}^{n} or $\mathbb{R}_{+}^{n}:=:\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in \mathbb{R}^{n-1}, x_{n}>0\right\}$, with $\bar{\Pi}_{j}$ being the closure of Π_{j}. Choose functions $\chi_{j} \in C^{\infty}(M)$, with $j=1, \ldots, \varkappa$, such that $\chi_{1}+\cdots \chi_{\varkappa}=1$ on M and that $\operatorname{supp} \chi_{j} \subset U_{j}$. By definition, the complex linear space $H_{p}^{s, \varphi}\left(M^{\circ}\right)$ consists of all extendable distributions u on M° such that $\left(\chi_{j} u\right) \circ \pi_{j} \in H_{p}^{s, \varphi}\left(\Pi_{j}\right)$ for every $j \in\{1, \ldots, \varkappa\}$, with $\left(\chi_{j} u\right) \circ \pi_{j}$ denoting the image of the distribution $\chi_{j} u$ in the local chart π_{j}. This space is endowed with the norm

$$
\left\|u, H_{p}^{s, \varphi}\left(M^{\circ}\right)\right\|:=\left\|\left(\chi_{1} u\right) \circ \pi_{1}, H_{p}^{s, \varphi}\left(\Pi_{1}\right)\right\|+\cdots+\left\|\left(\chi_{\varkappa} u\right) \circ \pi_{\varkappa}, H_{p}^{s, \varphi}\left(\Pi_{\varkappa}\right)\right\| .
$$

Theorem 1. Every space $H_{p}^{s, \varphi}\left(M^{\circ}\right)$ is complete and does not depend up to equivalence of norms on our choice of $\left\{\pi_{j}\right\}$ and $\left\{\chi_{j}\right\}$. If M° is a Euclidean domain, then both definitions of $H_{p}^{s, \varphi}\left(M^{\circ}\right)$ are equivalent.

Consider the case where $\partial M=\emptyset$, and suppose that A is an elliptic classical pseudodifferential operator on $M=M^{\circ}$ of order $r \in \mathbb{R}$ (specifically, A may be an elliptic linear partial differential operator with coefficients of class $C^{\infty}(M)$).

Theorem 2. The operator A is bounded and Fredholm on the pair of spaces $H_{p}^{s, \varphi}(M)$ and $H_{p}^{s-r, \varphi}(M)$ whenever $s \in \mathbb{R}, \varphi \in \Upsilon$, and $1<p<\infty$. Its kernel lies in $C^{\infty}(M)$ and together with the index does not depend on s, φ, and p (then the index is zero if $\operatorname{dim} M \geq 2$.)

Suppose that $n \geq 2$ and $\partial M \neq \emptyset$. If $s>1 / p$, then the traces space for $H_{p}^{s, \varphi}\left(M^{\circ}\right)$ coincides with the Besov space $B_{p}^{s-1 / p, \varphi}(\partial M)$ of generalized smoothness. The latter is built on the base of the relevant space over \mathbb{R}^{n-1} by the localization of ∂M in the same manner as those for $H_{p}^{s, \varphi}\left(M^{\circ}\right)$.
http://www.imath.kiev.ua/~young/youngconf2023

Recall (see, e.g., [1, p. 55]) the definition of the space $B_{p}^{\sigma, \varphi}\left(\mathbb{R}^{n-1}\right)$, with $\sigma \in \mathbb{R}$. Choose a function $\beta_{0} \in C^{\infty}\left(\mathbb{R}^{n-1}\right)$ such that $\beta_{0}(y)=3 / 2$ if $|y| \leq 1$ and that $\beta_{0}(y)=0$ if $|y| \geq 2$. Given $0 \leq k \in \mathbb{Z}$, put $\beta_{k}(y):=\beta_{0}\left(2^{-k} y\right)-\beta_{0}\left(2^{1-k} y\right)$ whenever $y \in \mathbb{R}^{n-1}$. The functions β_{k} form a diadic C^{∞}-resolution of unity on \mathbb{R}^{n-1}. The complex linear space $B_{p}^{\sigma, \varphi}\left(\mathbb{R}^{n-1}\right)$ consists, by definition, of all tempered distributions w on \mathbb{R}^{n-1} such that $w_{k}:=F^{-1}\left[\beta_{k} F w\right]$ belongs to $L_{p}\left(\mathbb{R}^{n-1}\right)$ whenever $0 \leq k \in \mathbb{Z}$ and that

$$
\left\|w, B_{p}^{\sigma, \varphi}\left(\mathbb{R}^{n-1}\right)\right\|^{p}:=\sum_{k=0}^{\infty}\left(2^{\sigma k} \varphi\left(2^{\sigma k}\right)\left\|w_{k}, L_{p}\left(\mathbb{R}^{n-1}\right)\right\|\right)^{p}<\infty
$$

This space is complete with respect to the norm $\left\|w, B_{p}^{\sigma, \varphi}\left(\mathbb{R}^{n-1}\right)\right\|$. The linear space $B_{p}^{\sigma, \varphi}(\partial M)$ is define to consist of all distributions v on ∂M such that $\left(\chi_{j} v\right) \circ \widetilde{\pi}_{j} \in B_{p}^{\sigma, \varphi}\left(\mathbb{R}^{n-1}\right)$ for every $j \in\{1, \ldots, \lambda\}$. Here, we suppose that $\Pi_{j}=\mathbb{R}_{+}^{n}$ iff $1 \leq j \leq \lambda$, and we let $\widetilde{\pi}_{j}$ stand for the restriction of π_{j} to the boundary of \mathbb{R}_{+}^{n}. The space $B_{p}^{\sigma, \varphi}(\partial M)$ is endowed with the norm

$$
\left\|v, B_{p}^{\sigma, \varphi}(\partial M)\right\|:=\left\|\left(\chi_{1} u\right) \circ \widetilde{\pi}_{1}, B_{p}^{\sigma, \varphi}\left(\mathbb{R}^{n-1}\right)\right\|+\cdots+\left\|\left(\chi_{\lambda} u\right) \circ \widetilde{\pi}_{\lambda}, B_{p}^{\sigma, \varphi}\left(\mathbb{R}^{n-1}\right)\right\|
$$

Theorem 3. Every space $B_{p}^{\sigma, \varphi}(\partial M)$ is complete and does not depend up to equivalence of norms on our choice of $\left\{\pi_{j}\right\}$ and $\left\{\chi_{j}\right\}$. If $\sigma>0$, then the mapping $u \mapsto u \upharpoonright \partial M$, where $u \in C^{\infty}(M)$, extends uniquely (by continuity) to a bounded trace operator $R: H_{p}^{\sigma+1 / p, \varphi}\left(M^{\circ}\right) \rightarrow$ $B_{p}^{\sigma, \varphi}(\partial M)$. In this case, $B_{p}^{\sigma, \varphi}(\partial M)$ coincides with $R\left(H_{p}^{\sigma+1 / p, \varphi}\left(M^{\circ}\right)\right)$, and we have the equivalence of the norms

$$
\left\|v, B_{p}^{\sigma, \varphi}(\partial M)\right\| \asymp \inf \left\{\left\|u, H_{p}^{\sigma+1 / p, \varphi}\left(M^{\circ}\right)\right\|: u \in H_{p}^{\sigma+1 / p, \varphi}\left(M^{\circ}\right), v=R u\right\}
$$

Consider an elliptic boundary problem on M of the form

$$
L u=f \text { on } M^{\circ}, \quad B_{j} u=g_{j} \text { on } \partial M, \quad j=1, \ldots, q .
$$

Here, L is a linear differential operator on M of even order $2 q \geq 2$, whereas each B_{j} is a linear boundary differential operator on ∂M of order $m_{j} \geq 0$. All coefficients of L and B_{j} are complex-valued C^{∞}-functions on M and ∂M, resp. Put $m:=\max \left\{m_{1}, \ldots, m_{q}\right\}$, the $m \geq 2 q$ case being admissible.

Theorem 4. The mapping $u \mapsto\left(L u, B_{1} u, \ldots, B_{q} u\right)$, where $u \in C^{\infty}(M)$, extends uniquely (by continuity) to a Fredholm bounded operator on the pair of spaces

$$
H_{p}^{s, \varphi}\left(M^{\circ}\right) \text { and } H_{p}^{s-2 q, \varphi}\left(M^{\circ}\right) \times \prod_{j=1}^{q} B_{p}^{s-m_{j}-1 / p, \varphi}(\partial M)
$$

whenever $1<p<\infty$, $s>m+1 / p$, and $\varphi \in \Upsilon$. The kernel of this operator lies in $C^{\infty}(M)$ and together with the index does not depend on s, φ, and p.

Similar results hold true for Besov and Triebel-Lizorkin spaces of generalized smoothness, which gives affirmative answers to some questions raised by H. Triebel in [1, Section 1.3.3]. These results are obtained together with A. Murach [2]. Their versions hold true for multiorder (i.e. Agmon-Douglis-Nirenberg) matrix elliptic operators and boundary problems.

1. Triebel H. Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration, Zürich: European Mathematical Society, 2010.
2. Anop A., Murach A. Interpolation spaces of generalized smoothness and their applications to elliptic equations, arXiv:2003.05360, 32 pp . (Ukrainian).
http://www.imath.kiev.ua/~young/youngconf2023
