ON ELLIPTIC EQUATIONS IN L_p -SOBOLEV SPACES OF GENERALIZED SMOOTHNESS

A.V. Anop

Institute of Mathematics, Kyiv, Ukraine Mathematical Institute, Georg-August University, Göttingen, Germany anop@imath.kiev.ua

We discuss the solvability of elliptic equations and elliptic boundary problems on compact C^{∞} -manifolds in the Sobolev spaces $H_p^{s,\varphi}$ whose generalized smoothness is given by the number $s \in \mathbb{R}$ and function parameter $\varphi \in \Upsilon$, with the number exponent p satisfying $1 . The set <math>\Upsilon$ consists of all positive functions $\varphi \in C^{\infty}([1,\infty))$ that satisfy the following two conditions: (i) φ varies slowly at ∞ in the sense of Karamata, i.e. $\varphi(\lambda t)/\varphi(t) \to 1$ as $t \to \infty$ whenever $\lambda > 0$; (ii) for each $m \in \mathbb{N}$ there is a number $c_m > 0$ that $t^m |\varphi^{(m)}(t)| \leq \varphi(t)$ whenever $t \geq 1$.

By definition, the complex linear space $H_p^{s,\varphi}(\mathbb{R}^n)$ consists of all tempered distributions won \mathbb{R}^n such that $w_{s,\varphi} := F^{-1}[\langle \xi \rangle^s \varphi(\langle \xi \rangle)(Fw)(\xi)]$ belongs to the Lebesgue space $L_p(\mathbb{R}^n)$. Here, as usual, F denotes the Fourier transform, and $\langle \xi \rangle := (1 + |\xi|^2)^{1/2}$ whenever $\xi \in \mathbb{R}^n$. The Banach space $H_p^{s,\varphi}(\mathbb{R}^n)$ is endowed with the norm $||w, H_p^{s,\varphi}(\mathbb{R}^n)|| := ||w_{s,\varphi}, L_p(\mathbb{R}^n)||$. If Ω is an open nonempty subset of \mathbb{R}^n , then the Banach space $H_p^{s,\varphi}(\Omega)$ consists, by definition, of the restrictions of all distributions $w \in H_p^{s,\varphi}(\mathbb{R}^n)$ to Ω and is endowed with the norm $||v, H_p^{s,\varphi}(\Omega)|| :=$ $\inf ||w, H_p^{s,\varphi}(\mathbb{R}^n)||$ where the infimum is taken over all $w \in H_p^{s,\varphi}(\mathbb{R}^n)$ such that w = v in Ω .

Let M be a compact oriented manifold of class C^{∞} and dimension $n \geq 1$. As usual, ∂M is the boundary of M, and $M^{\circ} := M \setminus \partial M$, we admitting the $\partial M = \emptyset$ case. Choose a finite collection of local maps $\pi_j : \overline{\Pi}_j \leftrightarrow U_j$ on M, with $j = 1, \ldots, \varkappa$. Here, $\{U_j\}$ is a covering of M by open sets, and each Π_j denotes either \mathbb{R}^n or $\mathbb{R}^n_+ :=: \{(x', x_n) : x' \in \mathbb{R}^{n-1}, x_n > 0\}$, with $\overline{\Pi}_j$ being the closure of Π_j . Choose functions $\chi_j \in C^{\infty}(M)$, with $j = 1, \ldots, \varkappa$, such that $\chi_1 + \cdots + \chi_{\varkappa} = 1$ on M and that supp $\chi_j \subset U_j$. By definition, the complex linear space $H_p^{s,\varphi}(M^{\circ})$ consists of all extendable distributions u on M° such that $(\chi_j u) \circ \pi_j \in H_p^{s,\varphi}(\Pi_j)$ for every $j \in \{1, \ldots, \varkappa\}$, with $(\chi_j u) \circ \pi_j$ denoting the image of the distribution $\chi_j u$ in the local chart π_j . This space is endowed with the norm

$$||u, H_p^{s,\varphi}(M^{\circ})|| := ||(\chi_1 u) \circ \pi_1, H_p^{s,\varphi}(\Pi_1)|| + \dots + ||(\chi_{\varkappa} u) \circ \pi_{\varkappa}, H_p^{s,\varphi}(\Pi_{\varkappa})||.$$

Theorem 1. Every space $H_p^{s,\varphi}(M^\circ)$ is complete and does not depend up to equivalence of norms on our choice of $\{\pi_j\}$ and $\{\chi_j\}$. If M° is a Euclidean domain, then both definitions of $H_p^{s,\varphi}(M^\circ)$ are equivalent.

Consider the case where $\partial M = \emptyset$, and suppose that A is an elliptic classical pseudodifferential operator on $M = M^{\circ}$ of order $r \in \mathbb{R}$ (specifically, A may be an elliptic linear partial differential operator with coefficients of class $C^{\infty}(M)$).

Theorem 2. The operator A is bounded and Fredholm on the pair of spaces $H_p^{s,\varphi}(M)$ and $H_p^{s-r,\varphi}(M)$ whenever $s \in \mathbb{R}$, $\varphi \in \Upsilon$, and $1 . Its kernel lies in <math>C^{\infty}(M)$ and together with the index does not depend on s, φ , and p (then the index is zero if dim $M \geq 2$.)

Suppose that $n \geq 2$ and $\partial M \neq \emptyset$. If s > 1/p, then the traces space for $H_p^{s,\varphi}(M^\circ)$ coincides with the Besov space $B_p^{s-1/p,\varphi}(\partial M)$ of generalized smoothness. The latter is built on the base of the relevant space over \mathbb{R}^{n-1} by the localization of ∂M in the same manner as those for $H_p^{s,\varphi}(M^\circ)$.

http://www.imath.kiev.ua/~young/youngconf2023

Recall (see, e.g., [1, p. 55]) the definition of the space $B_p^{\sigma,\varphi}(\mathbb{R}^{n-1})$, with $\sigma \in \mathbb{R}$. Choose a function $\beta_0 \in C^{\infty}(\mathbb{R}^{n-1})$ such that $\beta_0(y) = 3/2$ if $|y| \leq 1$ and that $\beta_0(y) = 0$ if $|y| \geq 2$. Given $0 \leq k \in \mathbb{Z}$, put $\beta_k(y) := \beta_0(2^{-k}y) - \beta_0(2^{1-k}y)$ whenever $y \in \mathbb{R}^{n-1}$. The functions β_k form a diadic C^{∞} -resolution of unity on \mathbb{R}^{n-1} . The complex linear space $B_p^{\sigma,\varphi}(\mathbb{R}^{n-1})$ consists, by definition, of all tempered distributions w on \mathbb{R}^{n-1} such that $w_k := F^{-1}[\beta_k Fw]$ belongs to $L_p(\mathbb{R}^{n-1})$ whenever $0 \leq k \in \mathbb{Z}$ and that

$$||w, B_p^{\sigma,\varphi}(\mathbb{R}^{n-1})||^p := \sum_{k=0}^{\infty} (2^{\sigma k} \varphi(2^{\sigma k}) ||w_k, L_p(\mathbb{R}^{n-1})||)^p < \infty.$$

This space is complete with respect to the norm $||w, B_p^{\sigma,\varphi}(\mathbb{R}^{n-1})||$. The linear space $B_p^{\sigma,\varphi}(\partial M)$ is define to consist of all distributions v on ∂M such that $(\chi_j v) \circ \tilde{\pi}_j \in B_p^{\sigma,\varphi}(\mathbb{R}^{n-1})$ for every $j \in \{1, \ldots, \lambda\}$. Here, we suppose that $\Pi_j = \mathbb{R}^n_+$ iff $1 \leq j \leq \lambda$, and we let $\tilde{\pi}_j$ stand for the restriction of π_j to the boundary of \mathbb{R}^n_+ . The space $B_p^{\sigma,\varphi}(\partial M)$ is endowed with the norm

$$\|v, B_p^{\sigma,\varphi}(\partial M)\| := \|(\chi_1 u) \circ \widetilde{\pi}_1, B_p^{\sigma,\varphi}(\mathbb{R}^{n-1})\| + \dots + \|(\chi_\lambda u) \circ \widetilde{\pi}_\lambda, B_p^{\sigma,\varphi}(\mathbb{R}^{n-1})\|.$$

Theorem 3. Every space $B_p^{\sigma,\varphi}(\partial M)$ is complete and does not depend up to equivalence of norms on our choice of $\{\pi_j\}$ and $\{\chi_j\}$. If $\sigma > 0$, then the mapping $u \mapsto u \upharpoonright \partial M$, where $u \in C^{\infty}(M)$, extends uniquely (by continuity) to a bounded trace operator $R: H_p^{\sigma+1/p,\varphi}(M^{\circ}) \rightarrow$ $B_p^{\sigma,\varphi}(\partial M)$. In this case, $B_p^{\sigma,\varphi}(\partial M)$ coincides with $R(H_p^{\sigma+1/p,\varphi}(M^{\circ}))$, and we have the equivalence of the norms

$$\|v, B_p^{\sigma,\varphi}(\partial M)\| \asymp \inf \big\{ \|u, H_p^{\sigma+1/p,\varphi}(M^\circ)\| : u \in H_p^{\sigma+1/p,\varphi}(M^\circ), v = Ru \big\}.$$

Consider an elliptic boundary problem on M of the form

$$Lu = f$$
 on M° , $B_j u = g_j$ on ∂M , $j = 1, ..., q$.

Here, L is a linear differential operator on M of even order $2q \ge 2$, whereas each B_j is a linear boundary differential operator on ∂M of order $m_j \ge 0$. All coefficients of L and B_j are complex-valued C^{∞} -functions on M and ∂M , resp. Put $m := \max\{m_1, \ldots, m_q\}$, the $m \ge 2q$ case being admissible.

Theorem 4. The mapping $u \mapsto (Lu, B_1u, \ldots, B_qu)$, where $u \in C^{\infty}(M)$, extends uniquely (by continuity) to a Fredholm bounded operator on the pair of spaces

$$H_p^{s,\varphi}(M^\circ)$$
 and $H_p^{s-2q,\varphi}(M^\circ) \times \prod_{j=1}^q B_p^{s-m_j-1/p,\varphi}(\partial M)$

whenever 1 , <math>s > m + 1/p, and $\varphi \in \Upsilon$. The kernel of this operator lies in $C^{\infty}(M)$ and together with the index does not depend on s, φ , and p.

Similar results hold true for Besov and Triebel–Lizorkin spaces of generalized smoothness, which gives affirmative answers to some questions raised by H. Triebel in [1, Section 1.3.3]. These results are obtained together with A. Murach [2]. Their versions hold true for multi-order (i.e. Agmon–Douglis–Nirenberg) matrix elliptic operators and boundary problems.

- 1. Triebel H. Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration, Zürich: European Mathematical Society, 2010.
- 2. Anop A., Murach A. Interpolation spaces of generalized smoothness and their applications to elliptic equations, arXiv:2003.05360, 32 pp. (Ukrainian).