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In this paper we are concerned with existence and regularity of distributional solution for a
nonlinear anisotropic elliptic equations with pi(x) growth conditions, degenerate coercivity and
Lm data with m being small. This paper is contributes to the generalization of the research
results [1] and [2].

Let us consider the following problem −
N∑
i=1

Di

(
ai(x, u)|Diu|pi(x)−2Diu

)
+ |u|s(x)−1u = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(1)

Here Ω is a bounded open subset of RN(N ≥ 2), f, u : Ω → R and ai : Ω × R → R are
Carathédory functions satisfying the following condition, for almost x ∈ Ω and for all s ∈ R

α

(1 + |s|)γ(x)
≤ ai(x, s) ≤ β, ∀i = 1, ..., N. (2)

Where α, β are positive constants. Moreover we consider the continuous functions
γ : Ω→ (0,+∞) , s : Ω→ (0,+∞) and pi : Ω→ (1,+∞) such that

Np(x)−mp(x)(1 + γ+)

Nm(p(x)− 1− γ+)
< pi(x) <

Np(x)−mp(x)(1 + γ+)

Np(x)−mp(x)(1 + γ+)−Nm(p(x)− 1− γ+)
(3)

and γ+ = max
x∈Ω

γ(x), for each i = 1, ..., N

p(x) =
1

N

N∑
i=1

1

pi(x)
, with p(x) < N.

In this article, we shall be concerned with the existence of distributional solutions for a class
of nonlinear anisotropic elliptic equation, The main difficulty of the problem is that even if the
differential operator

u 7−→ −
N∑
i=1

Di

(
ai(x, u)|Diu|pi(x)−2Diu

)
,

is well defined between W 1,−→p (.)
0 (Ω) and its dual W−1,−→p ′

(.)(Ω), it is not coercive on W 1,−→p (.)
0 (Ω):

degenerate coercivity means that when |u| is too big, 1
(1+|u|)γ(.) goes to zero. Due to the lack

of coercivity, the standard method for variational inequalities involving pseudo-monotone op-
erators can’t be applied even if the data f is sufficiently regular. To overcome this problem,
we will proceed by approximation by means of truncatures in ai(x, u) to get a coercive differ-
ential operator ai(x, Tn(un)). Also, we prove some a priori estimate on the solutions of these
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problems. Moreover, we pass to the limit in the strong L1 sense in the nonlinearity operator
ai(x, u)|Diu|pi(x)−2Diu, and finally conclude that the approximate solution uε converge to a
solution of (1). We assume that the condition (2) holds, and f ∈ Lm(Ω) such that

Np(x)

p(x) (1 + γ+) + 2N (p(x)− 1− γ+)
< m <

Np(x)

Np(x)− (1 + γ+)(N − p(x))
. (4)

Definition 1. A function u is a distribution solution of problem (1) if

u ∈ W 1,1
0 (Ω) and |u|s(.) ∈ L1(Ω),

and ∫
Ω

ai(x, u)|Diu|pi(x)−2DiuDiϕdx+

∫
Ω

|u|s(x)−1uϕ dx =

∫
Ω

fϕ dx,

for all ϕ ∈ C∞0 (Ω) .

Theorem 1. Let f ∈ Lm(Ω), where m as in (4). Assuming pi(.), s(.) and γ(.) are contin-
uous functions such that for all x ∈ Ω

s(x) ≥ pi(x), i = 1, ..., N,

and
0 < γ+ < p(x)− 1,

where pi(.) satisfying (3). Then the problem has a solution in the sense of distribution u ∈
W

1,−→q (.)
0 (Ω) where qi(.) are continuous functions on Ω satisfying

1 ≤ qi(x) <
Nmpi(x)(p(x)− 1− γ+)

Np(x)−mp(x)(1 + γ+)
, ∀x ∈ Ω, ∀i = 1, ..., N.
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