Global existence and Blow up of solutions of FRACTIONAL EVOLUTION PROBLEM

Abderrazak NABTi
University of Tebessa, Tebessa, Algeria
abderrazak.nabti@univ-tebessa.dz
We consider the blow-up, and global existence of solutions to the following time-space fractional diffusion problem

$$
\begin{equation*}
{ }_{0}^{C} D_{t}^{\alpha} u(x, t)+(-\Delta)^{\beta / 2} u(x, t)={ }_{0} J_{t}^{\gamma}\left(|u|^{p-1} u\right)(x, t), \quad x \in \mathbb{R}^{N}, t>0 \tag{1}
\end{equation*}
$$

supplemented with the initial data

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \in C_{0}\left(\mathbb{R}^{N}\right) \tag{2}
\end{equation*}
$$

where $0<\alpha<1-\gamma, 0<\gamma<1,0<\beta \leq 2, p>1$, ${ }_{0} J_{t}^{\gamma}$ denotes the left Riemann-Liouville fractional integral of order $\gamma,{ }_{0}^{C} D_{t}^{\alpha}$ is the Caputo fractional derivative of order α and $(-\Delta)^{\beta / 2}$ stands for the fractional Laplacian operator of order $\beta / 2$. We show that if $p<1+\beta(\alpha+\gamma) / \alpha N$, then every nonnegative solution blows up in finite time, and if $p \geq 1+\beta(\alpha+\gamma) / \alpha N$ and $\left\|u_{0}\right\|_{L^{q_{c}\left(\mathbb{R}^{N}\right)}}$ is sufficiently small, where $q_{c}=\alpha N(p-1) / \beta(\alpha+\gamma)$, then the problem has global solutions. Finally, we give an upper bound estimate of the life span of blowing-up solutions

Using a fixed point argument, we prove the local existence to problem (1)-(2). First, we give the definition of the mild solution of (1)-(2).

Definition 1. Let $u_{0} \in C_{0}\left(\mathbb{R}^{N}\right)$ and $T>0$. We say that $u \in C\left([0, T], C_{0}\left(\mathbb{R}^{N}\right)\right)$ is a mild solution of (1)-(2), if u satisfies

$$
\begin{equation*}
u(x, t)=P_{\alpha, \beta}(t) u_{0}(x)+\int_{0}^{t}(t-s)^{\alpha-1} S_{\alpha, \beta}(t-s)_{0} J_{s}^{\gamma}\left(|u|^{p-1} u\right)(x, s) \mathrm{d} s, \quad t \in[0, T] \tag{3}
\end{equation*}
$$

Theorem 1. Given $u_{0} \in C_{0}\left(\mathbb{R}^{N}\right)$, then there exists a maximal time $T_{\max }=T\left(u_{0}\right)>0$ such that problem (1)-(2) has a unique mild solution u in $C\left(\left[0, T_{\max }\right], C_{0}\left(\mathbb{R}^{N}\right)\right)$. Furthermore, either $T_{\max }=+\infty$ or $T_{\max }<+\infty$ and $\|u\|_{L^{\infty}\left((0, t), C_{0}\left(\mathbb{R}^{N}\right)\right)} \rightarrow+\infty$ as $t \rightarrow T_{\max }$. If, in addition, $u_{0} \geq 0, u_{0} \not \equiv 0$, then $u(t) \geq P_{\alpha, \beta}(t) u_{0}>0$ for $t \in\left(0, T_{\max }\right)$. Moreover, if $u_{0} \in L^{r}\left(\mathbb{R}^{N}\right)$ for some $r \in[1, \infty)$, then $u \in C\left(\left[0, T_{\max }\right), L^{r}\left(\mathbb{R}^{N}\right)\right)$.

Then, based on the test function argument, we deal with the follwing blow up result of (1)-(2). We first give the following definition of weak solution.

Definition 2. Let $u_{0} \in L_{l o c}^{\infty}\left(\mathbb{R}^{N}\right), 0<\beta \leq 2,0<\alpha<1-\gamma, 0<\gamma<1$ and $T>0$. We say that $u \in L^{p}\left((0, T), L_{l o c}^{\infty}\left(\mathbb{R}^{N}\right)\right)$ is a weak solution of (1)-(2) if

$$
\begin{align*}
& \int_{0}^{T} \int_{\mathbb{R}^{N}}{ }_{0} J_{t}^{\gamma}\left(|u|^{p-1} u\right) \psi(x, t) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\mathbb{R}^{N}} u_{0}{ }_{t}^{C} D_{T}^{\alpha} \psi(x, t) \mathrm{d} x \mathrm{~d} t \\
&=\int_{0}^{T} \int_{\mathbb{R}^{N}} u(-\Delta)^{\beta / 2} \psi(x, t) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\mathbb{R}^{N}} u_{t}^{C} D_{T}^{\alpha} \psi(x, t) \mathrm{d} x \mathrm{~d} t \tag{4}
\end{align*}
$$

for every $\psi \in C^{1}\left([0, T], H^{\beta}\left(\mathbb{R}^{N}\right)\right)$ with $\operatorname{supp}_{x} \psi \subset \subset \mathbb{R}^{N}$ and $\psi(., T)=0$.
https://www.imath.kiev.ua/~young/youngconf2023

Moreover, we give the following lemma which proves that every mild solution of problem (1)-(2) is a weak solution.

Lemma 1. Let $u_{0} \in C_{0}\left(\mathbb{R}^{N}\right)$ and $u \in C\left([0, T], C_{0}\left(\mathbb{R}^{N}\right)\right)$ be a mild solution of (1)-(2). Then u is also a weak solution of (1)-(2), for $0<\beta \leq 2,0<\alpha<1-\gamma, 0<\gamma<1$ and all $T>0$.

Then, we have
Theorem 2. Let $u_{0} \in C_{0}\left(\mathbb{R}^{N}\right)$ and $u_{0} \geq 0, u_{0} \not \equiv 0$. If

$$
1<p<1+\frac{\beta(\alpha+\gamma)}{\alpha N}
$$

then every solution of problem (1)-(2) blows up in finite time.
Next, we show that the solutions of (1)-(2) exist globally.
Theorem 3. Let $u_{0} \in C_{0}\left(\mathbb{R}^{N}\right)$ and $u_{0} \geq 0, u_{0} \not \equiv 0$. If $p \geq 1+\beta(\alpha+\gamma) / \alpha N$ and $\left\|u_{0}\right\|_{L^{q_{c}\left(\mathbb{R}^{N}\right)}}$ is sufficienlly small, where $q_{c}=\alpha N(p-1) / \beta(\alpha+\gamma)$, then solutions of (1)-(2) exist globally. Note that we can take $\left|u_{0}(x)\right| \leq C|x|^{-\beta(\alpha+\gamma) /(p-1)}$ instead of $u_{0} \in L^{q_{c}}\left(\mathbb{R}^{N}\right)$.

1. A. NABTi. Life Span of Blowing-up Solutions to Cauchy Problem For a Time-Space Fractional Diffusion Equation. Computers and Mathematics with Applications, 2018, ISSN 0898-1221, https://doi.org/10.1016/j.camwa.2018.10.034.
