STABILIZERS OF MORSE-BOTT FUNCTIONS ON SURFACES AND THEIR HOMOTOPY TYPE

B. Feshchenko

Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

fb@imath.kiev.ua

Let M be a smooth compact surface, P be either \mathbb{R} or S^1 , and $\mathcal{D}(M)$ be a group of C^{∞} diffeomorphisms of M. For a smooth function $f \in C^{\infty}(M, P)$ we denote by $\mathcal{S}(f)$ the stabilizer of f, i.e., a subgroup of $\mathcal{D}(M)$ of f-preserving diffeomorphisms of M, and by $\mathcal{S}_{id}(f)$ a connected component of the identity map of the group $\mathcal{S}(f)$.

The report will be devoted to the description of the homotopy type of $S_{id}(f)$ for *P*-valued Morse-Bott functions on surfaces. We proved that $S_{id}(f)$ is contractible if f has at least one saddle point or M is non-oriented, and to S^1 otherwise. Moreover, the result holds for some larger class of smooth functions, see [1].

1. Feshchenko B., Homotopy type of stabilizers of circle-valued functions with non-isolated singularities on surfaces, arXiv:2305.08255