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A direct generalization of Zadeh’s fuzzy sets [5] and Atanassov’s intuitionistic fuzzy sets [1]
is the following notion of picture fuzzy sets.

Definition 1. [2] Let X be a non-empty set. A picture fuzzy set A on X is an object of
the form A = {〈x, µA (x) , ηA (x) , υA (x)〉 | x ∈ X} , where µA (x) ∈ [0, 1] is called "the degree
of positive membership of x in A”, ηA (x) ∈ [0, 1] is called "the degree of neutral membership
of x in A” and υA (x) ∈ [0, 1] is called "the degree of negative membership of x in A”. µA, ηA
and υA satisfy µA (x) + ηA (x) + υA (x) ≤ 1, for any x ∈ X. The quantity πA (x) = 1 −
(µA (x) + ηA (x) + υA (x)) is called "the degree of refusal membership of x in A”.

The set of all the picture fuzzy sets in the universe X will be denoted by PFS(X).

Definition 2. [3,4] Consider the bounded lattice (D∗,�,f,g, 0D∗ , 1D∗) where
D∗ =

{
x = (x1, x2, x3) ∈ [0, 1]3 , x1 + x2 + x3 ≤ 1

}
, the order relation � defined by x � y if

and only if (x1 < y1 and x3 ≥ y3) or (x1 = y1 and x3 > y3) or (x1 = y1, x3 = y3 and x2 ≤ y2) ,
1D∗ = (1, 0, 0) , 0D∗ = (0, 0, 1) , and for each x, y ∈ D∗, xf y and xg y defined as follows:

xf y =


x, if x � y,
y, if y � x,
(x1 ∧ y1, 1− x1 ∧ y1 − x3 ∨ y3, x3 ∨ y3) , otherwise.

xg y =


y, if x � y,
x, if y � x,
(x1 ∨ y1, 0, x3 ∧ y3) , otherwise.

This set plays the role of a prototype of a picture fuzzy set, and the study of this set allows
us to perform picture fuzzy sets operations using these of D∗.

Definition 3. [2,4] Let X 6= ∅ and let A,B ∈ PFS(X). Using the laws of D∗, we define

• A ⊆ B iff (µA (x) < µB (x) and υA (x) ≥ υB (x)) or (µA (x) = µB (x) and υA (x) > υB (x))
or (µA (x) = µB (x) and υA (x) = υB (x) and ηA (x) ≤ ηB (x)), for all x ∈ X.

• A ∩B = {〈x, µA (x) ∧ µB (x) , ηA∩B (x) , υA (x) ∨ υB (x)〉 | x ∈ X} ,

where ηA∩B (x) =


ηA (x) if A ⊆ B,
ηB (x) if B ⊆ A,
1− µA (x) ∧ µB (x)− υA (x) ∨ υB (x) , otherwise.

• A ∪B = {〈x, µA (x) ∨ µB (x) , ηA∪B (x) , υA (x) ∧ υB (x)〉 | x ∈ X} ,

where ηA∪B (x) =


ηB (x) if A ⊆ B,
ηA (x) if B ⊆ A,
0 otherwise.

• ∅ = {〈x, 0, 0, 1〉 | x ∈ X} and X = {〈x, 1, 0, 0〉 | x ∈ X} .
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Among the most important notions in fuzzy set theory are the notions of support, kernel,
cuts and fuzzy line of degree α of a fuzzy set, where α ∈ D∗. In the sequel, we generalize these
notions to the notions of a picture fuzzy set with respect the order � in Definition 2.

In what follows we denote by D∗0 = D∗ − {0D∗} ,D∗1 = D∗ − {1D∗} .

Definition 4. Let X 6= ∅ and let A ∈ PFS(X). We define the following crisp subsets

1. The support of A: S(A) = {x ∈ X | µA (x) > 0 or (µA (x) = 0 and υA (x) < 1)}.

2. The kernel of A: Ker(A) = {x ∈ X | µA (x) = 1, ηA (x) = 0 and υA (x) = 0}.

3. The α-cut of A: for all α ∈ D∗0, Aα = {x ∈ X | (µA (x) > α1 and υA (x) ≤ α3)
or (µA (x) = α1 and υA (x) < α3) or (µA (x) = α1, υA (x) = α3 and ηA (x) ≥ α2)} .

4. The strong α-cut of A: for all α ∈ D∗1, A+
α = {x ∈ X | (µA (x) > α1 and υA (x) ≤ α3)

or (µA (x) = α1 and υA (x) < α3) or (µA (x) = α1, υA (x) = α3 and ηA (x) > α2)}.

5. The picture fuzzy line of degree α of A: Lα (A) = {x ∈ X | A (x) = α}, for all α ∈ D∗.

Proposition 1. Let X 6= ∅ and let A,B ∈ PFS(X). Then for all α, β ∈ D∗,

1. A+
α ⊆ Aα,Lα (A) ⊆ Aα, L1D∗ (A) = Ker (A) .

2. For all α ∈ D∗0, A ⊆ B iff Aα ⊆ Bα, and for all α ∈ D∗1, A ⊆ B iff A+
α ⊆ B+

α .

3. For all α, β ∈ D∗0, α � β implies Aα ⊇ Aβ, and for all α, β ∈ D∗1, α � β implies A+
α ⊇ A+

β .

4. (A ∩B)α = Aα ∩Bα, (A ∪B)α ⊇ Aα ∪Bα.

5. A = B if and only if Lα (A) = Lα (B) .

6. If α 6= β, then Lα (A) ∩ Lβ (A) = ∅.

7. Lα (A) ∩ Lα (B) ⊆ Lα (A ∩B) ⊆ Aα ∩Bα, Lα (A) ∪ Lβ (B) ⊆ Lαgβ (A ∪B) .

Remark 1. The converse of (6) holds if Lα (A) 6= ∅ or Lβ (A) 6= ∅.

This theorem permit to express any picture fuzzy subset of X in terms of its α-cuts, strong
α-cut and picture fuzzy line of degree α.

Theorem 1. Let X 6= ∅ and let A ∈ PFS(X). Then, for all x ∈ X,α, λ ∈ D∗ :
A (x) = g

α∈D∗
αAα (x) = g

α∈D∗
αA+

α (x) = g
α∈D∗

αLα (A) (x) , and Aα = ∪
α�λ

Aλ.
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