On some properties of Poisson (2-3)-Algebras

O. O. Pypka

Oles Honchar Dnipro National University, Dnipro, Ukraine
sasha.pypka@gmail.com
Let P be a vector space over a field F. Then P is called a Poisson (2-3)-algebra, if P has a binary operation \cdot and ternary operation $[-,-,-]$ such that the product \cdot forms a commutative associative algebra, the bracket $[-,-,-]$ forms a Lie 3 -algebra, and $[-,-,-]$ acts as derivation of the product \cdot, that is • and $[-,-,-]$ satisfy the Leibniz (2-3)-identity. In other words,

$$
\begin{gathered}
a b=b a,(a b) c=a(b c), \\
a(b+c)=a b+a c,(\lambda a) b=a(\lambda b)=\lambda(a b), \\
{\left[a_{1}+a_{2}, b, c\right]=\left[a_{1}, b, c\right]+\left[a_{2}, b, c\right],} \\
{\left[a, b_{1}+b_{2}, c\right]=\left[a, b_{1}, c\right]+\left[a, b_{2}, c\right],} \\
{\left[a, b, c_{1}+c_{2}\right]=\left[a, b, c_{1}\right]+\left[a, b, c_{2}\right],} \\
{[\lambda a, b, c]=[a, \lambda b, c]=[a, b, \lambda c]=\lambda[a, b, c],} \\
{\left[a_{1}, a_{2}, a_{3}\right]=0 \text { whenever } a_{i}=a_{j} \text { for some } i \neq j, 1 \leqslant i, j \leqslant 3,} \\
\left.\left[a_{1}, a_{2}, a_{3}\right], b, c\right]=\left[\left[a_{1}, b, c\right], a_{2}, a_{3}\right]+\left[a_{1},\left[a_{2}, b, c\right], a_{3}\right]+\left[a_{1}, a_{2},\left[a_{3}, b, c\right]\right], \\
{\left[a_{1} a_{2}, b, c\right]=a_{2}\left[a_{1}, b, c\right]+a_{1}\left[a_{2}, b, c\right]}
\end{gathered}
$$

for all $a, a_{1}, a_{2}, a_{3}, b, b_{1}, b_{2}, c, c_{1}, c_{2} \in P, \lambda \in F$.
The purpose of the talk is to show some properties of Poisson (2-3)-algebras, which are analogous to the results for Poisson algebras from the paper [1].

1. Kurdachenko L. A., Pypka A. A., Subbotin I. Ya. On extension of classical Baer results to Poisson algebras. Algebra Discrete Math., 2021, 31, No. 1, 84-108.
