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The condition of Lie orthogonality of operators defined on Lie algebras [1,2] naturally arises
in the course of the study of certain structures connected to Lie algebras such as Kähler man-
ifolds and Clifford structures. Here we extend the results obtained in [3] for semisimple and
reductive algebras to general metric algebras, see [4, Chapter 3] for a detailed presentation .

Definition 1. A linear operator J on a Lie algebra g is called Lie-orthogonal if [Jx, Jy] =
[x, y] for any x, y ∈ g.

Lie-orthogonal operators can be classified up to the following equivalence [3]:

Definition 2. We call Lie-orthogonal operators J and J̃ on a Lie algebra equivalent if the
image of their difference is contained in the center of this algebra.

Lemma 1. Let g be a finite-dimensional centerless Lie algebra that decomposes into the
direct sum of its ideals i1, . . . ik, g = i1 ⊕ · · · ⊕ ik. An operator J is Lie-orthogonal on g if and
only if it can be represented as J = J1 ⊕ · · · ⊕ Jk, where for any i = 1, . . . , k the operator Ji
is Lie-orthogonal on ii. If the center of the algebra g is nonzero, then the same representation
holds up to the equivalence of Lie-orthogonal operators.

Recall that a Lie algebra g is called a metric algebra if there exists a nondegenerate sym-
metric invariant bilinear form B(x, y). Classical examples of metric Lie algebras are

• semisimple algebras, for each of which the respective Killing form is, up to a nonzero
multiplier, the only such form,

• abelian algebras, for which every symmetric bilinear form is trivially invariant,
• reductive algebras as direct sums of semisimple and abelian ones.

For other examples of metric Lie algebras, see Example 1.

Lemma 2. Any Lie-orthogonal operator on any metric Lie algebra is equivalent to one
which is annuled by the polynomial x2 − 1.

Theorem 1. Let g be a finite-dimensional metric Lie algebra, and J a Lie-orthogonal
operator on g. Then there exists a decomposition of g into a direct sum of two ideals i+, i−:
g = i+ ⊕ i− such that the operator J is of the form

J = idi+ ⊕ (−idi−) + Jz, (1)

where Jz is an operator on g with image in the center z.

Corollary 1. Lie-orthogonal operators on any simple Lie algebra are exhausted by the trivial
operators idg та −idg.

Corollary 2. Let g be a finite-dimensional semisimple Lie algebra, and g = i1⊕ · · · ⊕ ip be
its decomposition into simple components. Then any Lie-orthogonal operator J on g is of the
form J = J1 ⊕ · · · ⊕ Jp, where for every s = 1, . . . , p, either Js = idis or Js = −idis.
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Combining Lemma 1 with Corollary 2 gives a complete description of Lie-orthogonal oper-
ators on reductive Lie algebras.

Corollary 3. Let g be a finite-dimensional reductive Lie algebra, and g = z⊕ i1⊕· · ·⊕ ip be
its decomposition into center and simple components. An operator J on g is Lie-orthogonal if
and only if it has the form J = J0⊕J1⊕· · ·⊕Jp+Jz, where for every s = 1, . . . , p either Js = idis

or Js = −idis, J0 is a zero operator on z, Jz is any operator on g with image in the center z.

Example 1. The four-dimensional non-abelian metric real Lie algebras are the two re-
ductive algebras A1 ⊕ sl(2,R) and A1 ⊕ so(3) and two indecomposable solvable algebras, the
oscillator algebra A0

4.9 and the diamond algebra A−1
4.8; see their commutation relations, e.g., in [4]

or [5]. Theorem 1 implies that the set of Lie-orthogonal operators on each of these algebras is
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Remark 1. Metric Lie algebras do not exhaust all Lie algebras Lie-orthogonal opera-
tors on which necessarily admit the decomposition (1). Consider the nonmetric Lie algebra
g = sl(2,C) ∈ρ1 2g1, where ρ1 is the standard irreducible representation of sl(2,C) in the
two-dimensional vector space. Up to the skew-symmetry of the Lie bracket, the nonzero com-
mutation relations of this algebra in the canonical basis are exhausted by

[e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1,

[e1, e4] = e4, [e2, e5] = e4, [e3, e4] = e5, [e1, e5] = −e5,

i.e., e1, e2 and e3 constitute a basis of a Levi factor of g, which is isomorphic to sl(2,C),
and (e4, e5) is a basis of the abelian radical r of g. It is proved in [4, Proposition 3.53] that
Lie-orthogonal operators on g are exhausted by the trivial operators idg та −idg.

Proposition 1. Let J be a Lie-orthogonal operator on a finite-dimensional Lie algebra g
with the eigenvalue λ = 1 and i1 be the ideal corresponding to this eigenvalue. Then the
restriction J1 of the operator J on the ideal i1 can be represented, up to equivalence of Lie-
orthogonal operators on i1, in the form J1 = idi1 + N , where N is a nilpotent operator on i1
and the image of N is contained in the radical r1 of the ideal i1.
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