ON THE ALGEBRA OF DERIVATIONS OF THE LEIBNIZ ALGEBRA $\mathbf{Lei}_{3}(3, F)$

L. A. Kurdachenko¹, M. M. Semko², V. S. Yashchuk³

^{1,3}Oles Honchar Dnipro National University, Dnipro, Ukraine

²State Tax University, Irpin, Ukraine

 $lkurdachenko@gmail.com,\ dr.mykola.semko@gmail.com,\ viktoriia.s.yashchuk@gmail.com$

In this abstract we describe the algebra of derivation of some nilpotent Leibniz algebra, having dimension 3.

Let L be an algebra over a field F with the binary operations + and $[\cdot, \cdot]$. Then L is called a *Leibniz algebra* (more precisely a *left Leibniz algebra*), if it satisfies the (left) Leibniz identity

[[a, [b, c]] = [[a, b], c] + [b, [a, c]] for all $a, b, c \in L$.

Leibniz algebras appeared first in the paper of A. M. Bloh [1], but the term "Leibniz algebra" appears in the book of J.-L. Loday [2].

Denote by $\mathbf{End}_{[,]}(L)$ the set of all linear transformations of L, then L is an associative algebra by the operation + and \circ . As usual, $\mathbf{End}_{[,]}(L)$ is a Lie algebra by the operations + and [,], where $[f,g] = f \circ g - g \circ f$ for all $f,g \in \mathbf{End}_{[,]}(L)$.

A linear transformation f of a Leibniz algebra L is called a *derivation*, if

f([a,b]) = [f(a),b] + [a,f(b)] for all $a, b \in L$.

Let $\mathbf{Der}_{[,]}(L)$ be the subset of all derivations of L. It is possible to prove that $\mathbf{Der}_{[,]}(L)$ is a subalgebra of a Lie algebra $\mathbf{End}_{[,]}(L)$. $\mathbf{Der}_{[,]}(L)$ is called the *algebra of derivations* of a Leibniz algebra L.

Theorem 1. Let **D** be an algebra of derivations of the Leibniz algebra $\text{Lei}_3(3, F)$. Then the following assertions hold:

- (i) **D** is a semidirect sum of an ideal **A** and a subalgebra of dimension 1, generated by derivation f_1 such that $f_1(a_1) = a_1, f_1(a_2) = a_2, f_1(a_3) = 2a_3$;
- (ii) **A** is a semidirect sum of an ideal **N** of **D** and a subalgebra of dimension 1, generated by derivation f_2 such that $f_2(a_1) = a_2$, $f_2(a_2) = a_2$, $f_2(a_3) = a_3$;
- (iii) an ideal **N** is abelian, $\mathbf{N} = Ff_3 \oplus Ff_4$, where

$$f_3(a_1) = a_3, f_3(a_2) = 0, f_3(a_3) = 0, f_4(a_1) = 0, f_4(a_2) = a_3, f_4(a_3) = 0.$$

Moreover,
$$[f_1, f_4] = f_4$$
, $[f_1, f_3] = f_3$, $[f_1, f_2] = 0$, $[f_2, f_4] = -f_3$, $[f_2, f_3] = f_3$;

(iv) an algebra **D** is isomorphic to a Lie subalgebra of matrices, having the following form

$$\begin{pmatrix} \alpha_1 & 0 & 0 \\ \alpha_2 & \alpha_1 + \alpha_2 & 0 \\ \alpha_3 & \beta_3 & 2\alpha_1 + \alpha_2 \end{pmatrix}, where \ \alpha_1, \alpha_2, \alpha_3, \beta_3 \in F.$$

- 1. Bloh A. M. On a generalization of the concept of Lie algebra. Doklady AN USSR, 1965, 165, 471–473 (in Russian).
- Loday J.-L. Une version non commutative des algebres de Lie; les algebres de Leibniz. Enseign. Math., 1993, 39, 269–293.