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In this abstract we describe the algebra of derivation of some nilpotent Leibniz algebra,
having dimension 3.

Let L be an algebra over a field F with the binary operations + and [·, ·]. Then L is called
a Leibniz algebra (more precisely a left Leibniz algebra), if it satisfies the (left) Leibniz identity

[[a, [b, c]] = [[a, b], c] + [b, [a, c]] for all a, b, c ∈ L.

Leibniz algebras appeared first in the paper of A.M. Bloh [1], but the term “Leibniz algebra”
appears in the book of J.- L. Loday [2].

Denote by End[,](L) the set of all linear transformations of L, then L is an associative
algebra by the operation + and ◦. As usual, End[,](L) is a Lie algebra by the operations +
and [, ], where [f, g] = f ◦ g − g ◦ f for all f, g ∈ End[,](L).

A linear transformation f of a Leibniz algebra L is called a derivation, if

f([a, b]) = [f(a), b] + [a, f(b)] for all a, b ∈ L.

Let Der[,](L) be the subset of all derivations of L. It is possible to prove that Der[,](L) is a
subalgebra of a Lie algebra End[,](L). Der[,](L) is called the algebra of derivations of a Leibniz
algebra L.

Theorem 1. Let D be an algebra of derivations of the Leibniz algebra Lei3(3, F ). Then
the following assertions hold:

(i) D is a semidirect sum of an ideal A and a subalgebra of dimension 1, generated by
derivation f1 such that f1(a1) = a1, f1(a2) = a2, f1(a3) = 2a3;

(ii) A is a semidirect sum of an ideal N of D and a subalgebra of dimension 1, generated by
derivation f2 such that f2(a1) = a2, f2(a2) = a2, f2(a3) = a3;

(iii) an ideal N is abelian, N = Ff3 ⊕ Ff4, where

f3(a1) = a3, f3(a2) = 0, f3(a3) = 0, f4(a1) = 0, f4(a2) = a3, f4(a3) = 0.

Moreover, [f1, f4] = f4, [f1, f3] = f3, [f1, f2] = 0, [f2, f4] = −f3, [f2, f3] = f3;

(iv) an algebra D is isomorphic to a Lie subalgebra of matrices, having the following form α1 0 0
α2 α1 + α2 0
α3 β3 2α1 + α2

 ,where α1, α2, α3, β3 ∈ F.
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