ON THE ALGEBRA OF DERIVATIONS OF THE LEIBNIZ ALGEBRA $\operatorname{Lei}_{3}(3, F)$

L. A. Kurdachenko ${ }^{1}$, M. M. Semko ${ }^{2}$, V. S. Yashchuk ${ }^{3}$
${ }^{1,3}$ Oles Honchar Dnipro National University, Dnipro, Ukraine
${ }^{2}$ State Tax University, Irpin, Ukraine

lkurdachenko@gmail.com, dr.mykola.semko@gmail.com, viktoriia.s.yashchuk@gmail.com
In this abstract we describe the algebra of derivation of some nilpotent Leibniz algebra, having dimension 3.

Let L be an algebra over a field F with the binary operations + and $[\cdot, \cdot]$. Then L is called a Leibniz algebra (more precisely a left Leibniz algebra), if it satisfies the (left) Leibniz identity

$$
[[a,[b, c]]=[[a, b], c]+[b,[a, c]] \text { for all } a, b, c \in L .
$$

Leibniz algebras appeared first in the paper of A. M. Bloh [1], but the term "Leibniz algebra" appears in the book of J.- L. Loday [2].

Denote by $\operatorname{End}_{[,]}(L)$ the set of all linear transformations of L, then L is an associative algebra by the operation + and \circ. As usual, $\operatorname{End}_{[,]}(L)$ is a Lie algebra by the operations + and $[$,$] , where [f, g]=f \circ g-g \circ f$ for all $f, g \in \operatorname{End}_{[,]}(L)$.

A linear transformation f of a Leibniz algebra L is called a derivation, if

$$
f([a, b])=[f(a), b]+[a, f(b)] \text { for all } a, b \in L
$$

Let $\operatorname{Der}_{[,]}(L)$ be the subset of all derivations of L. It is possible to prove that $\operatorname{Der}_{[,]}(L)$ is a subalgebra of a Lie algebra $\operatorname{End}_{[,]}(L) . \operatorname{Der}_{[,]}(L)$ is called the algebra of derivations of a Leibniz algebra L.

Theorem 1. Let \mathbf{D} be an algebra of derivations of the Leibniz algebra $\mathbf{L e i}_{3}(3, F)$. Then the following assertions hold:
(i) \mathbf{D} is a semidirect sum of an ideal \mathbf{A} and a subalgebra of dimension 1 , generated by derivation f_{1} such that $f_{1}\left(a_{1}\right)=a_{1}, f_{1}\left(a_{2}\right)=a_{2}, f_{1}\left(a_{3}\right)=2 a_{3}$;
(ii) \mathbf{A} is a semidirect sum of an ideal \mathbf{N} of \mathbf{D} and a subalgebra of dimension 1 , generated by derivation f_{2} such that $f_{2}\left(a_{1}\right)=a_{2}, f_{2}\left(a_{2}\right)=a_{2}, f_{2}\left(a_{3}\right)=a_{3}$;
(iii) an ideal \mathbf{N} is abelian, $\mathbf{N}=F f_{3} \oplus F f_{4}$, where

$$
f_{3}\left(a_{1}\right)=a_{3}, f_{3}\left(a_{2}\right)=0, f_{3}\left(a_{3}\right)=0, f_{4}\left(a_{1}\right)=0, f_{4}\left(a_{2}\right)=a_{3}, f_{4}\left(a_{3}\right)=0
$$

Moreover, $\left[f_{1}, f_{4}\right]=f_{4},\left[f_{1}, f_{3}\right]=f_{3},\left[f_{1}, f_{2}\right]=0,\left[f_{2}, f_{4}\right]=-f_{3},\left[f_{2}, f_{3}\right]=f_{3}$;
(iv) an algebra \mathbf{D} is isomorphic to a Lie subalgebra of matrices, having the following form

$$
\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
\alpha_{2} & \alpha_{1}+\alpha_{2} & 0 \\
\alpha_{3} & \beta_{3} & 2 \alpha_{1}+\alpha_{2}
\end{array}\right) \text {, where } \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{3} \in F
$$

1. Bloh A. M. On a generalization of the concept of Lie algebra. Doklady AN USSR, 1965, 165, 471-473 (in Russian).
2. Loday J.- L. Une version non commutative des algebres de Lie; les algebres de Leibniz. Enseign. Math., 1993, 39, 269-293.
