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Let R and Hm×n stand respectively to the real number field and the set of allm×n matrices
over the quaternion algebra

H =
{
a0 + a1i+ a2j + a3k | i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R

}
.

A matrix A ∈ Hn×n is said to be a η-(skew) Hermitian if A = Aη∗ (A = −Aη∗) for
η ∈ {i, j, k}. Motivated by [1, 2], in this paper we establish necessary and sufficient conditions
for the existence of η-(skew) Hermitian reflexive solution of the system of quaternion matrix
equations : 

AX = C
XB = D

NXNη∗ = A3

(1)

and also provide the general expressions of solutions when this system has a solution. In
addition, we give some results about the existence of the η- (skew) Hermitian reflexive solution
of some classical linear systems.

Definition 1. Given a generalized reflection matrix P ∈ Hn×n i.e. P ∗ = P and P 2 = In.
1. A matrix A ∈ Hn×n is said to be an η- Hermitian reflexive matrix with respect to P if
A = Aη∗ and A = PAP.
2. A matrix A ∈ Hn×n is said to be an η- skew-Hermitian reflexive matrix if A = −Aη∗ and
A = PAP .
We denote the set of all n× n η-Hermitian (η-skew-Hermitian) reflexive matrices with respect
to P by ~Hn×n

r (P ) (S~Hn×n
r (P )).

The main result of this work is the following.

Theorem 1. Given a generalized reflection matrix P ∈ Hn×n. Let A ∈ Hm×n, B ∈ Hn×l,
C ∈ Hm×n, D ∈ Hn×l, N ∈ Hq×n and A3 = Aη∗3 ∈ Hq×q for (η ∈ {i, j, k}) be given. We put

E =

[
A1

Bη∗
1

]
, F =

[
C1

Dη∗
1

]
, G =

[
A2

Bη∗
2

]
, H =

[
C2

Dη∗
2

]
,

K = C3LE, J = D3LG, M = RKJ , S = JLM ,

Q = A3 − C3E
+FCη∗

3 − C3F
η∗ (E+

)η∗
Cη∗

3 −D3G
+HDη∗

3 −D3H
η∗ (G+

)η∗
Dη∗

3

+ C3E
+EF η∗ (E+

)η∗
Cη∗

3 +D3G
+GHη∗ (G+

)η∗
Dη∗

3 .

Then, the following statements are equivalent:
1) The system (1) has a η- Hermitian reflexive solution X ∈ ~Hn×n

r (P ).
2)

EF η∗ = FEη∗,
GHη∗ = HGη∗,
REF = RGH = RMRKQ = RKQ(RJ)

η = 0.
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3)

r

[
A1 C1

Bη∗
1 Dη∗

1

]
= r

[
A1

Bη∗
1

]
,

r

[
A2 C2

Bη∗
2 Dη∗

2

]
= r

[
A2

Bη∗
2

]
,

r


A3 D3 C3

C2D
η∗
3 A2 0

Dη∗
2 D

η∗
3 Bη∗

2 0
C1C

η∗
3 0 A1

Dη∗
1 C

η∗
3 0 Bη∗

1

 = r


D3 C3

A2 0
Bη∗

2 0
0 A1

0 Bη∗
1

 ,

r


A3 C3 D3C

η∗
2 D3D2

Dη∗
3 0 Aη∗2 B2

C1C
η∗
3 A1 0 0

Dη∗
1 C

η∗
3 Bη∗

1 0 0

 = r

 C3

A1

Bη∗
1

+ r

 D3

A2

Bη∗
2

 .

In this case the η- Hermitian reflexive solution of the system (I) can be expressed as the following

X = U

(
X1 0
0 X2

)
Uη∗ ∈ ~Hn×n

r (P )

where

X1 = Xη∗
1 = E+F + F η∗(E+)η∗ − E+EF η∗(E+)η∗ + LEK

+Q(K+)η∗(LE)
η∗

− LEK+SW2(LEK
+S)η∗ − 1

2
LEK

+JM+Q[I + (SJ+)η∗](LEK
+)η∗

− 1

2
LEK

+(I + SJ+)Q(LEK
+JM+)η∗ + LELKV

η∗
1 (LE)

η∗ + LEV1(LELK)
η∗, (2)

X2 = Xη∗
2 = G+H +Hη∗(G+)η∗ −G+GHη∗(G+)η∗ +

1

2
LGM

+Q(J+)η∗[I + (S+S)η∗](LG)
η∗

+
1

2
LG(I + S+S)J+Q(LGM

+)η∗ + LGLMW2(LGLM)η∗ + LGLMLSW1(LG)
η∗+

LGW
η∗
1 (LGLMLS)

η∗ + LGLJV
η∗
2 (LG)

η∗ + LGV2(LGLJ)
η∗. (3)

where V1, V2, W1 and W2 = W η∗
2 are arbitrary matrices over H with appropriate sizes.
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