η-(SKEW) HERMITIAN REFLEXIVE SOLUTION TO A SYSTEM OF REAL QUATERNION MATRIX EQUATIONS

R. Belkhiri ${ }^{1}$, S. Guerarra ${ }^{2}$

Department of Mathematics and Informatics, University of Oum El Bouaghi, 04000, Algeria radja.belkhiri@univ-oeb.dz, guerarra.siham@univ-oeb.dz

Let \mathbb{R} and $\mathbb{H}^{m \times n}$ stand respectively to the real number field and the set of all $m \times n$ matrices over the quaternion algebra

$$
\mathbb{H}=\left\{a_{0}+a_{1} i+a_{2} j+a_{3} k \mid i^{2}=j^{2}=k^{2}=i j k=-1, a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\} .
$$

A matrix $A \in \mathbb{H}^{n \times n}$ is said to be a η-(skew) Hermitian if $A=A^{\eta *}\left(A=-A^{\eta *}\right)$ for $\eta \in\{i, j, k\}$. Motivated by [1, 2], in this paper we establish necessary and sufficient conditions for the existence of η-(skew) Hermitian reflexive solution of the system of quaternion matrix equations :

$$
\left\{\begin{array}{c}
A X=C \tag{1}\\
X B=D \\
N X N^{\eta *}=A_{3}
\end{array}\right.
$$

and also provide the general expressions of solutions when this system has a solution. In addition, we give some results about the existence of the η - (skew) Hermitian reflexive solution of some classical linear systems.

Definition 1. Given a generalized reflection matrix $P \in \mathbb{H}^{n \times n}$ i.e. $P^{*}=P$ and $P^{2}=I_{n}$. 1. A matrix $A \in \mathbb{H}^{n \times n}$ is said to be an η - Hermitian reflexive matrix with respect to P if $A=A^{\eta *}$ and $A=P A P$.
2. A matrix $A \in \mathbb{H}^{n \times n}$ is said to be an η - skew-Hermitian reflexive matrix if $A=-A^{n *}$ and $A=P A P$.
We denote the set of all $n \times n \eta$-Hermitian (η-skew-Hermitian) reflexive matrices with respect to P by $\hbar \mathbb{H}_{r}^{n \times n}(P)\left(S \hbar \mathbb{H}_{r}^{n \times n}(P)\right)$.

The main result of this work is the following.
Theorem 1. Given a generalized reflection matrix $P \in \mathbb{H}^{n \times n}$. Let $A \in \mathbb{H}^{m \times n}, B \in \mathbb{H}^{n \times l}$, $C \in \mathbb{H}^{m \times n}, D \in \mathbb{H}^{n \times l}, N \in \mathbb{H}^{q \times n}$ and $A_{3}=A_{3}^{\eta *} \in \mathbb{H}^{q \times q}$ for ($\eta \in\{i, j, k\}$) be given. We put

$$
\begin{gathered}
E=\left[\begin{array}{c}
A_{1} \\
B_{1}^{\eta *}
\end{array}\right], F=\left[\begin{array}{c}
C_{1} \\
D_{1}^{\eta *}
\end{array}\right], G=\left[\begin{array}{c}
A_{2} \\
B_{2}^{\eta *}
\end{array}\right], H=\left[\begin{array}{c}
C_{2} \\
D_{2}^{\eta *}
\end{array}\right], \\
K=C_{3} L_{E}, J=D_{3} L_{G}, M=R_{K} J, S=J L_{M}, \\
Q=A_{3}-C_{3} E^{+} F C_{3}^{\eta *}-C_{3} F^{\eta *}\left(E^{+}\right)^{\eta *} C_{3}^{\eta *}-D_{3} G^{+} H D_{3}^{\eta *}-D_{3} H^{\eta *}\left(G^{+}\right)^{\eta *} D_{3}^{\eta *} \\
+C_{3} E^{+} E F^{\eta *}\left(E^{+}\right)^{\eta *} C_{3}^{\eta *}+D_{3} G^{+} G H^{\eta *}\left(G^{+}\right)^{\eta *} D_{3}^{\eta *} .
\end{gathered}
$$

Then, the following statements are equivalent:

1) The system (1) has a η - Hermitian reflexive solution $X \in \hbar \mathbb{H}_{r}^{n \times n}(P)$.
2)

$$
\begin{aligned}
E F^{\eta *} & =F E^{\eta *}, \\
G H^{\eta *} & =H G^{n *}, \\
R_{E} F & =R_{G} H=R_{M} R_{K} Q=R_{K} Q\left(R_{J}\right)^{\eta}=0 .
\end{aligned}
$$

http://www.imath.kiev.ua/~young/youngconf2023

$$
\begin{aligned}
r\left[\begin{array}{cc}
A_{1} & C_{1} \\
B_{1}^{\eta *} & D_{1}^{\eta *}
\end{array}\right] & =r\left[\begin{array}{c}
A_{1} \\
B_{1}^{\eta *}
\end{array}\right], \\
r\left[\begin{array}{cc}
A_{2} & C_{2} \\
B_{2}^{\eta *} & D_{2}^{\eta *}
\end{array}\right] & =r\left[\begin{array}{c}
A_{2} \\
B_{2}^{\eta *}
\end{array}\right], \\
r\left[\begin{array}{ccc}
A_{3} & D_{3} & C_{3} \\
C_{2} D_{3}^{\eta *} & A_{2} & 0 \\
D_{2}^{\eta *} D_{3}^{\eta *} & B_{2}^{\eta *} & 0 \\
C_{1} C_{3}^{\eta *} & 0 & A_{1} \\
D_{1}^{\eta *} C_{3}^{\eta *} & 0 & B_{1}^{\eta *}
\end{array}\right] & =r\left[\begin{array}{cc}
D_{3} & C_{3} \\
A_{2} & 0 \\
B_{2}^{\eta *} & 0 \\
0 & A_{1} \\
0 & B_{1}^{\eta *}
\end{array}\right], \\
r\left[\begin{array}{cccc}
A_{3} & C_{3} & D_{3} C_{2}^{\eta *} & D_{3} D_{2} \\
D_{3}^{\eta *} & 0 & A_{2}^{\eta *} & B_{2} \\
C_{1} C_{3}^{\eta *} & A_{1} & 0 & 0 \\
D_{1}^{\eta *} C_{3}^{\eta *} & B_{1}^{\eta *} & 0 & 0
\end{array}\right] & =r\left[\begin{array}{c}
C_{3} \\
A_{1} \\
B_{1}^{\eta *}
\end{array}\right]+r\left[\begin{array}{c}
D_{3} \\
A_{2} \\
B_{2}^{\eta *}
\end{array}\right] .
\end{aligned}
$$

In this case the η-Hermitian reflexive solution of the system (I) can be expressed as the following

$$
X=U\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right) U^{\eta *} \in \hbar \mathbb{H}_{r}^{n \times n}(P)
$$

where

$$
\begin{align*}
& X_{1}=X_{1}^{\eta *}=E^{+} F+F^{\eta *}\left(E^{+}\right)^{\eta *}-E^{+} E F^{\eta *}\left(E^{+}\right)^{\eta *}+L_{E} K^{+} Q\left(K^{+}\right)^{\eta *}\left(L_{E}\right)^{\eta *} \\
&-L_{E} K^{+} S W_{2}\left(L_{E} K^{+} S\right)^{\eta *}-\frac{1}{2} L_{E} K^{+} J M^{+} Q\left[I+\left(S J^{+}\right)^{\eta *}\right]\left(L_{E} K^{+}\right)^{\eta *} \\
&-\frac{1}{2} L_{E} K^{+}\left(I+S J^{+}\right) Q\left(L_{E} K^{+} J M^{+}\right)^{\eta *}+L_{E} L_{K} V_{1}^{\eta *}\left(L_{E}\right)^{\eta *}+L_{E} V_{1}\left(L_{E} L_{K}\right)^{\eta *}, \tag{2}\\
& X_{2}= X_{2}^{\eta *}=G^{+} H+H^{\eta *}\left(G^{+}\right)^{\eta *}-G^{+} G H^{\eta *}\left(G^{+}\right)^{\eta *}+\frac{1}{2} L_{G} M^{+} Q\left(J^{+}\right)^{\eta *}\left[I+\left(S^{+} S\right)^{\eta *}\right]\left(L_{G}\right)^{\eta *} \\
&+\frac{1}{2} L_{G}\left(I+S^{+} S\right) J^{+} Q\left(L_{G} M^{+}\right)^{\eta *}+L_{G} L_{M} W_{2}\left(L_{G} L_{M}\right)^{\eta *}+L_{G} L_{M} L_{S} W_{1}\left(L_{G}\right)^{\eta *}+ \\
& L_{G} W_{1}^{\eta *}\left(L_{G} L_{M} L_{S}\right)^{\eta *}+L_{G} L_{J} V_{2}^{\eta *}\left(L_{G}\right)^{\eta *}+L_{G} V_{2}\left(L_{G} L_{J}\right)^{\eta *} . \tag{3}
\end{align*}
$$

where V_{1}, V_{2}, W_{1} and $W_{2}=W_{2}^{\eta *}$ are arbitrary matrices over \mathbb{H} with appropriate sizes.

1. Dehghan M., Hajarian M. The reflexive and antireflexive solutions of a linear matrix equation and system of matrix equations. Rocky Mountain Journal of Mathematics, 2010, 40, 3, 825-848.
2. Zhang F. Quaternions and matrices of quaternions. Linear Algebra and Its Applications, 1997, 251, 21-57.
