On Some arithmetic functions for Gaussian integers

N. O. Arskyi

Ukrainian Physical and Mathematical Lyceum of
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
nikita.arskiy.25@gmail.com
Gaussian integers are complex numbers whose real and imaginary parts are integers. In this research, we study the properties of some number-theoretic functions-the number of divisors $\tau^{*}(\alpha)$, sum of the m-th powers of the divisors $\sigma_{m}^{*}(\alpha)$ and product of the divisors $\pi^{*}(\alpha)$ of a non-zero Gaussian integer α-that are defined as follows:

$$
\tau^{*}(\alpha)=\sum_{\delta \mid \alpha} 1, \quad \sigma_{m}^{*}(\alpha)=\sum_{\delta \mid \alpha} \delta^{m}, \quad \pi^{*}(\alpha)=\prod_{\delta \mid \alpha} \delta
$$

For a non-zero Gaussian integer α that is not a unit and has a prime factorization of the form $\mu \rho_{1}^{a_{1}} \rho_{2}^{a_{2}} \cdot \ldots \cdot \rho_{k}^{a_{k}}$, we obtained the following calculation formulae of the above-mentioned functions:

$$
\begin{gathered}
\tau^{*}(\alpha)=4 \prod_{j=1}^{k}\left(a_{j}+1\right), \quad \sigma_{4 m}^{*}(\alpha)=4 \prod_{j=1}^{k} \frac{\rho_{j}^{4 m\left(a_{j}+1\right)}-1}{\rho_{j}^{4 m}-1}, \\
\pi^{*}(\alpha)= \begin{cases}\alpha^{\frac{1}{2} \tau^{*}(\alpha)} & \text { if } \alpha \text { is not a square of a Gaussian integer; } \\
-\alpha^{\frac{1}{2} \tau^{*}(\alpha)} & \text { if } \alpha \text { is a square of a Gaussian integer. }\end{cases}
\end{gathered}
$$

The criteria of divisibility of the number and sum of the divisors by certain numbers were proven. In particular, we showed that $\tau^{*}(\alpha)$ is divisible by 8 if and only if α is not an associate of a square of a non-zero Gaussian integer; $\sigma_{4 m}^{*}(\alpha), m \in \mathbb{N}$ is divisible by 8 if and only if neither α nor $(1+i) \alpha$ is an associate of a square of a Gaussian integer; and that otherwise $\sigma_{4 m}^{*}(\alpha)$ is not divisible by $4(1+i)$.

The values of the τ^{*} and $\sigma_{4 m}^{*}, m \in \mathbb{N}$, functions for a non-zero Gaussian integer α were estimated from above with its absolute value. For the $\sigma_{4 m}^{*}$ function, we also established the lower and upper bounds that use the radical $\operatorname{rad}^{*}(\alpha)$ of α - the product of its prime divisors:

$$
\frac{4|\alpha|^{4 m}}{\left|\operatorname{rad}^{*}(\alpha)\right|^{4 m \log _{4} \frac{4}{3}}} \leq\left|\sigma_{4 m}^{*}(\alpha)\right| \leq 4|\alpha|^{4 m}\left|\operatorname{rad}^{*}(\alpha)\right|^{4 m \log _{4} \frac{17}{12}}
$$

Aside from that, it was proven that if $\beta \mid \alpha$, where $\alpha, \beta \in \mathbb{Z}[i] \backslash\{0\}$, then the number, sum of the $4 m$-th powers and product of those divisors of α that are divisible by β equal $\tau^{*}\left(\frac{\alpha}{\beta}\right), \beta^{4 m} \sigma_{4 m}^{*}\left(\frac{\alpha}{\beta}\right)$ and $\beta^{\tau^{*}\left(\frac{\alpha}{\beta}\right)} \pi^{*}\left(\frac{\alpha}{\beta}\right)$, respectively.

The other objects studied are sums of products containing a fixed number of divisors of a Gaussian integer; and sums of their reciprocals:

$$
\begin{aligned}
s_{k, m}^{*}(\alpha) & =\sum_{1 \leq a_{1}<a_{2}<\ldots<a_{k} \leq \tau^{*}(\alpha)} \delta_{a_{1}}^{m} \delta_{a_{2}}^{m} \cdot \ldots \cdot \delta_{a_{k}}^{m} ; \\
p_{k, m}^{*}(\alpha) & =\sum_{1 \leq a_{1}<a_{2}<\ldots<a_{k} \leq \tau^{*}(\alpha)} \frac{1}{\delta_{a_{1}}^{m} \delta_{a_{2}}^{m} \cdot \ldots \cdot \delta_{a_{k}}^{m}} .
\end{aligned}
$$

For these sums, we obtained the calculation formulae for the case of two and three divisors; the transition formulae connecting values of the $s_{k, m}^{*}$ and $p_{k, m}^{*}$ functions; and the recurrence formulae allowing one to calculate sums of products of any number of divisors:

$$
\begin{aligned}
s_{k+1, m}^{*}(\alpha) & =\frac{1}{k+1}\left((-1)^{k} \sigma_{(k+1) m}^{*}(\alpha)+\sum_{l=0}^{k-1}(-1)^{l} s_{k-l, m}^{*}(\alpha) \sigma_{(l+1) m}^{*}(\alpha)\right) \\
p_{k+1, m}^{*}(\alpha) & =\frac{1}{k+1}\left(\frac{(-1)^{k} \sigma_{(k+1) m}^{*}(\alpha)}{\alpha^{(k+1) m}}+\sum_{l=0}^{k-1} \frac{(-1)^{l} p_{k-l, m}^{*}(\alpha) \sigma_{(l+1) m}^{*}(\alpha)}{\alpha^{(l+1) m}}\right) .
\end{aligned}
$$

Among the obtained properties, there are also some conditions when these sums take either integer or rational values; or when they are equal to zero. We also studied values of the analogous sums for those divisors of a Gaussian integer that are divisible by another Gaussian integer.

The practical value of the outcomes of this research was shown in the compact solutions to the self-created problems that were constructed based on the formulated propositions.

Acknowledgements. The author warmly thanks his supervisor O. G. Ganyushkin for useful advice.

