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Gaussian integers are complex numbers whose real and imaginary parts are integers. In this
research, we study the properties of some number-theoretic functions—the number of divisors
τ ∗(α), sum of the m-th powers of the divisors σ∗m(α) and product of the divisors π∗(α) of a
non-zero Gaussian integer α—that are defined as follows:

τ ∗(α) =
∑
δ|α

1, σ∗m(α) =
∑
δ|α

δm, π∗(α) =
∏
δ|α

δ.

For a non-zero Gaussian integer α that is not a unit and has a prime factorization of the
form µρa11 ρ

a2
2 · . . . · ρ

ak
k , we obtained the following calculation formulae of the above-mentioned

functions:

τ ∗(α) = 4
k∏
j=1

(aj + 1), σ∗4m(α) = 4
k∏
j=1

ρ
4m(aj+1)
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ρ4mj − 1
,

π∗(α) =

{
α

1
2
τ∗(α) if α is not a square of a Gaussian integer;

−α 1
2
τ∗(α) if α is a square of a Gaussian integer.

The criteria of divisibility of the number and sum of the divisors by certain numbers were
proven. In particular, we showed that τ ∗(α) is divisible by 8 if and only if α is not an associate
of a square of a non-zero Gaussian integer; σ∗4m(α),m ∈ N is divisible by 8 if and only if neither
α nor (1 + i)α is an associate of a square of a Gaussian integer; and that otherwise σ∗4m(α) is
not divisible by 4(1 + i).

The values of the τ ∗ and σ∗4m,m ∈ N, functions for a non-zero Gaussian integer α were
estimated from above with its absolute value. For the σ∗4m function, we also established the
lower and upper bounds that use the radical rad∗(α) of α—the product of its prime divisors:

4|α|4m

|rad∗(α)|4m log4
4
3

≤ |σ∗4m(α)| ≤ 4|α|4m|rad∗(α)|4m log4
17
12 .

Aside from that, it was proven that if β|α, where α, β ∈ Z[i] r {0}, then the number,
sum of the 4m-th powers and product of those divisors of α that are divisible by β equal
τ ∗(α

β
), β4mσ∗4m(

α
β
) and βτ

∗(α
β
)π∗(α

β
), respectively.

The other objects studied are sums of products containing a fixed number of divisors of a
Gaussian integer; and sums of their reciprocals:

s∗k,m(α) =
∑

1≤a1<a2<...<ak≤τ∗(α)

δma1δ
m
a2
· . . . · δmak ;

p∗k,m(α) =
∑

1≤a1<a2<...<ak≤τ∗(α)
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m
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.
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For these sums, we obtained the calculation formulae for the case of two and three divisors;
the transition formulae connecting values of the s∗k,m and p∗k,m functions; and the recurrence
formulae allowing one to calculate sums of products of any number of divisors:

s∗k+1,m(α) =
1

k + 1

(
(−1)kσ∗(k+1)m(α) +

k−1∑
l=0
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)
;
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1
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(
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+
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)
.

Among the obtained properties, there are also some conditions when these sums take either
integer or rational values; or when they are equal to zero. We also studied values of the
analogous sums for those divisors of a Gaussian integer that are divisible by another Gaussian
integer.

The practical value of the outcomes of this research was shown in the compact solutions to
the self-created problems that were constructed based on the formulated propositions.
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