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The theory of equations with variational (functional) derivatives is a fairly
extensive area of mathematics. This class of equations has numerous ap-
plications in statistical physics, quantum field theory, hydromechanics and
other fields. The theory of variational derivatives, differential and integro-
differential equations with variational derivatives is quite fully stated, for
example, in the monographs [1–3] and the works [4–10].

The problems that are formulated and investigated in this area of math-
ematics are similar to the problems considered in the case of ordinary and
partial differential equations. Explicit formulas for solving equations with
variational derivatives are known only in a few cases. This applies mainly
to the set of linear equations [5–8]. Therefore, the main methods for solving
such equations are approximate.

The problem of an approximate solution of equations with variational
derivatives is not sufficiently studied. When solving this class of problems,
it may be useful to apply methods that take into account the given initial and
boundary values. In particular, in the Cauchy problem for an equation of
the n-th order, the desired functional F (x) can be approximately found from
the values of the functional F (x0) and its variational derivatives up to the
(n− 1)-th order, which are known at the point x0(t). For this, it is natural
to use the operator interpolation apparatus [11, 12]. Consider one of the
ways for the approximate solution of equations with variational derivatives,
based on interpolation of the functional included in the equation.

We formulate the definition of the variational derivative for functionals
defined on sets of functions [9]. Let X be a linear space of real functions
defined on a segment [a, b] of the real axis R, and F be an operator or
functional given on the X.

The k-th order Gateaux differential δkF [x;h1, h2, ..., hk] (k ∈ N) of the
mapping F at the point x ∈ X in the directions h1, h2, ..., hk ∈ X is defined
by the equality

δkF [x;h1, h2, ..., hk] =

= lim
λ→0

δk−1F [x+ λhk;h1, h2, ..., hk−1]− δk−1F [x;h1, h2, ..., hk−1]

λ
=

1



2

=
∂kF (x+ λ1h1 + λ2h2 + ...+ λkhk)

∂λk · · · ∂λ1

∣∣∣∣
λ1=...=λk=0

, δ0F [x] ≡ F (x) .

If there exists the k-th order Gateaux differential δkF [x;h1, h2, ..., hk]
(x, hi ∈ X; i = 1, 2, ..., k) of the functional F (x) at the point x ∈ X in
the directions h1, h2, ..., hk ∈ X, that can be represented as

δkF [x;h1, h2, ..., hk] =

∫
[a,b]k

a (x; t1, ..., tk)h1 (t1) ...hk (tk) dt1...dtk, (1)

where a (x; t1, ..., tk) is some function depending on x = x (s) and vari-
ables t1, ..., tk ∈ R, then a (x; t1, ..., tk) is called the variational derivative
of the k-th order of the functional F (x) with respect to x at the point

t = (t1, t2, ..., tk) and denoted by the symbol
δkF (x)

δx(t1) · · · δx(tk)
.

As X, one can choose the space C[a, b] of continuous functions with a
uniform norm, the Hilbert space L2[a, b] or any other space such that the
integral on the right-hand side of (1) makes sense.

We give formulas for the exact solution of some of the simplest differential
equations with variational derivatives.

For example, for the equation

δF (x)

δx(t)
= 2p (t) cosx (t)

∫ 1

0
p (t) sinx (t) dt,

the solution is the functional F (x) =

(∫ 1

0
p (t) sinx (t) dt

)2

, where p (t)

and x (t) are elements of space C[0, 1].

The functional F (x) =

∫ b

a
p (t) f [x (t)] dt is the solution of the equation

δF (x)

δx(t)
= p (t) f ′ [x (t)] .

The solution of the equation

δF (x)

δx(t)
= p0 (t) ex(t) + p1(t) cosx (t) + p2 (t) sinx (t) + p3 (t)x (t) +

+p4 (t)

∫ 1

0
p4 (τ)x (τ) dτ

has the form

F (x) =

∫ 1

0

[
p0 (t) ex(t) + p1 (t) sinx (t)− p2(t) cosx (t) +

1

2

(∫ 1

0
p4 (t)x (t) dt

)2
]
p (t) sinx (t) dt,

where p0 (t) (i = 0, 1, ..., 4) are arbitrary functions for which reduced inte-
grals exist.
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Next, we consider a differential equation of the hyperbolic type with the
second-order variational derivatives:

δ2u (x, y)

δx2 (t)
− a2 (t)

δ2u (x, y)

δy2 (t)
= 0

(x = x (t) ≥ 0, y = y (t) , a (t) 6= 0; t ∈ [a, b] ⊆ R) . (2)

The solution of this equation is the functional

u (x, y) = f1

[∫ b

a
(y (t) + a (t)x (t)) dt

]
+ f2

[∫ b

a
(y (t)− a (t)x (t)) dt

]
,

(3)
where f1 (·) è f2 (·) are any functions that are twice differentiable on R. The
representation (3) is an analogue of the classical Dalamber formula.

We give the Hermite interpolation formulaH (x, y) with respect to a single
node of the second multiplicity, which is an approximation to the solution
u (x, y) of the Cauchy problem for equation (2) with the initial conditions

u (x0, y) = u0 (y) ,
δu (x0, y)

δx
= u1 (y) , (4)

where u0 (y) and u1 (y) are some functionals defined on C[a, b].

Theorem 1. An approximate solution of the Cauchy problem (2), (4) can
be represented as

H (x, y) = u0 (y) +u1 (y)

∫ b

a
(x(t)− x0(t)) dt+

1

2
a2 (t)u′′0 (y) [x(t)− x0(t)]2 .

(5)

The proof of this theorem is based on a direct verification of the interpo-
lation conditions (4).

Substituting the approximation H (x, y) of the form (5) to the solution
u (x, y) of the equation (2) in the left-hand side of equality (2), we obtain

δ2H (x, y)

δx2 (t)
− a2 (t)

δ2H (x, y)

δy2 (t)
= −a2 (t) ·(∫ b

a
(x(t)− x0(t)) dt u′′1 (y) +

1

2
a2 (t)u

(4)
0 (y) [x(t)− x0(t)]2

)
δ (s− t) δ (s1 − t) ,

where the delta function δ (t) =

{
0, t 6= 0;

+∞, t = 0.
In particular, at the point

(x0, y) we have
δ2H (x0, y)

δx2 (t)
− a2 (t)

δ2H (x0, y)

δy2 (t)
= 0.

We note that in the case u′′1 (y) = u
(4)
0 (y) ≡ 0, the equality

δ2H (x, y)

δx2 (t)
− a2 (t)

δ2H (x, y)

δy2 (t)
= 0

takes place for any (x, y) from the domain of definition.
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The obtained results can serve as a basis for further research of the theory
of differential equations with variational derivatives that is not well devel-
oped, and can also be used to construct approximate interpolation methods
for solving some linear and nonlinear differential equations with variational
derivatives of the first and second order that are found in various applied
fields and mathematical physics.
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