Mappings with finite length distortion on Riemann surfaces

Sergei Volkov

(Donetsk National Technical University, Pokrovsk, Ukraine) E-mail: serhii.volkov@donntu.edu.ua

Vladimir Ryazanov

(Institute of Applied Mathematics and Mechanics of National Academy of Sciences of Ukraine; Bogdan Khmelnytsky National University of Cherkasy, Physics Dept., Lab. of Math. Physics)

E-mail: Ryazanov@nas.gov.ua, vl.ryazanov1@gmail.com

The class of mappings with finite length distortion was introduced in [1] for \mathbb{R}^n , $n \ge 2$, see also [2]. It was shown in [3] that such mappings, generally speaking, are not mappings with finite distortion by Iwaniec investigated on Riemann surfaces in [4]–[5]. This class is a natural generalization of the classes of isometries and quasi-isometries. We prove criteria in terms of dilatations K_f for the continuous and homeomorphic extension to the boundary of these mappings f between domains in **compactifications by Kerekjarto-Stoilow** of Riemann surfaces, see definitions and notations in [4]–[6]. For instance:

Theorem 1. Let \mathbb{S} and \mathbb{S}^* be Riemann surfaces, D and D^* be domains in $\overline{\mathbb{S}}$ and $\overline{\mathbb{S}^*}$, correspondingly, $\partial D \subset \mathbb{S}$ and $\partial D^* \subset \mathbb{S}^*$, D be locally connected on its boundary and let ∂D^* be weakly flat. Suppose that $f: D \to D^*$ is a homeomorphism of finite length distortion with $K_f \in L^1_{\text{loc}}$. Then the mapping $g = f^{-1}: D^* \to D$ is extended by continuity to a mapping $\tilde{g}: \overline{D^*} \to \overline{D}$ and $\tilde{g}(\partial D^*) = \partial D$.

Theorem 2. Let \mathbb{S} , \mathbb{S}^* be Riemann surfaces, D, D^* be domains on $\overline{\mathbb{S}}$, $\overline{\mathbb{S}^*}$, $\partial D \subset \mathbb{S}$, $\partial D^* \subset \mathbb{S}^*$, D be locally connected on ∂D , ∂D^* be strongly accessible. Suppose that $f: D \to D^*$ is a homeomorphism with finite length distortion and, for all $p_0 \in \partial D$,

 $\langle \rangle$

$$\int_{0}^{\varepsilon(p_0)} \frac{dr}{||K_f||(p_0,r)} = \infty , \qquad ||K_f||(p_0,r)| := \int_{h(p,p_0)=r} K_f(p) \, ds_h(p) \, . \tag{1}$$

Then the mapping f is extended by continuity to a mapping $\tilde{f}: \overline{D} \to \overline{D^*}$ and $\tilde{f}(\partial D) = \partial D^*$.

For proofs and new criteria, see the extended version (in English) expected in Dopovidi of NASU.

References

 Olli Martio, Vladimir Ryazanov, Uri Srebro, Eduard Yakubov. Mappings with finite length distortion. J. Anal. Math., 93: 215–236, 2004.

- [2] Olli Martio, Vladimir Ryazanov, Uri Srebro, Eduard Yakubov. Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, New York: Springer, 2009.
- [3] Denis Kovtonyuk, Igor Petkov, Vladimir Ryazanov. On the boundary behavior of mappings with finite distortion in the plane. *Lobachevskii J. Math.* (US), 38 (2): 290–306, 2017.
- [4] Sergei Volkov, Vladimir Ryazanov. On the boundary behavior of mappings in the class W^{1,1}_{loc} on Riemann surfaces (in Russian). Proceedings of Inst. Appl. Math. Mech. of NASU, 29: 34–53, 2015.
- [5] Sergei Volkov, Vladimir Ryazanov. On the boundary behavior of mappings in the class W1,1loc on Riemann surfaces. *Complex Anal. Oper. Theory*, 11 (7): 1503–1520, 2017.
- [6] Sergei Volkov, Vladimir Ryazanov. On mappings of finite length distortion on Riemannian surfaces (in Ukrainian). Proceedings of Inst. Appl. Math. Mech. of NASU, 33: 50–65, 2019.

 $\mathbf{2}$