On global behavior of mappings in terms of prime ends

Sevost'yanov Evgeny

(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics, Slavyansk) *E-mail:* esevostyanov2009@gmail.com

Skvortsov Sergei

(Zhytomyr Ivan Franko State University) *E-mail:* serezha.skv@gmail.com

An *end* of a domain D is an equivalence class of chains of cross-cuts of D. We say that an end K is a prime end if K contains a chain of crosscuts $\{\sigma_m\}$, such that $\lim_{m\to\infty} M(\Gamma(C,\sigma_m,D)) = 0$ for some continuum C in D, where M is the modulus of the family $\Gamma(C, \sigma_m, D)$. We say that the boundary of a domain D in \mathbb{R}^n is *locally quasiconformal* if every point $x_0 \in$ ∂D has a neighborhood U that admit a conformal mapping φ onto the unit ball $\mathbb{B}^n \subset \mathbb{R}^n$ such that $\varphi(\partial D \cap U)$ is the intersection of \mathbb{B}^n and a coordinate hyperplane. We say that a bounded domain D in \mathbb{R}^n is regular if D can be mapped quasiconformally onto a bounded domain with a locally quasiconformal boundary. If \overline{D}_P is the completion of a regular domain D by its prime ends and g_0 is a quasiconformal mapping of a domain D_0 with locally quasiconformal boundary onto D, then this mapping naturally determines the metric $\rho_0(p_1, p_2) = |\widetilde{g_0}^{-1}(p_1) - \widetilde{g_0}^{-1}(p_2)|$, where $\widetilde{g_0}$ is the extension of g_0 onto $\overline{D_0}$. In what follows, given $p \ge 1$, M_p denotes the *n*-modulus of a family of paths, and the element dm(x) corresponds to a Lebesgue measure in \mathbb{R}^n , $n \ge 2$. For given sets E and F and a given domain D in $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$, we denote by $\Gamma(E, F, D)$ the family of all paths γ : $[0,1] \to \overline{\mathbb{R}^n}$ joining E and F in D, that is, $\gamma(0) \in E$, $\gamma(1) \in F$ and $\gamma(t) \in D$ for all $t \in [0,1]$. Let $x_0 \in \overline{D}, x_0 \neq \infty, S(x_0,r) = \{x \in \mathbb{R}^n : |x - x_0| = r\},\$ $A = A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\}.$ Let $Q : \mathbb{R}^n \to \mathbb{R}^n$ be a Lebesgue measurable function satisfying the condition $Q(x) \equiv 0$ for $x \in \mathbb{R}^n \setminus D$. A mapping $f: D \to \overline{\mathbb{R}^n}$ is called a ring Q-mapping at the point $x_0 \in \overline{D} \setminus \{\infty\}$ with respect to p-modulus, if the condition

$$M_p(f(\Gamma(S(x_0, r_1), S(x_0, r_2), D))) \leqslant \int_{A \cap D} Q(x) \cdot \eta^p(|x - x_0|) \, dm(x)$$
(1)

holds for all $0 < r_1 < r_2 < d_0 := \sup_{x \in D} |x - x_0|$ and all Lebesgue measurable functions $\eta : (r_1, r_2) \to [0, \infty]$ such that $\int_{r_1}^{r_2} \eta(r) dr \ge 1$. Set $\omega_{n-1} = \mathcal{H}^{n-1}(S(0,1)), q_{x_0}(r) := \frac{1}{\omega_{n-1}r^{n-1}} \int_{\substack{|x-x_0|=r \\ |x-x_0|=r}} Q(x) d\mathcal{H}^{n-1}$. In what follows, h is a chordal (spherical) metric in \mathbb{R}^n . Given $p \ge 1, \delta > 0$, a domain $D \subset \mathbb{R}^n$, $n \geq 2$, a continuum $A \subset D$ and a Lebesgue measurable function $Q : D \to [1, \infty]$ we denote $\mathfrak{F}_{Q,A,p,\delta}(D)$ the family of all ring Q-homeomorphisms $f : D \to \overline{\mathbb{R}^n}$ in \overline{D} with respect to p-modulus satisfying the conditions $h(f(A)) \geq \delta$ and $h(\overline{\mathbb{R}^n} \setminus f(D)) \geq \delta$.

Theorem 1. Let $p \in (n-1,n]$, let D be regular domain and let $D'_f = f(D)$ be equi-uniform family of bounded domains with respect to p-modulus over all $f \in \mathfrak{F}_{Q,A,p,\delta}(D)$, while f(D) have locally quasiconformal boundaries. If Q either has a finite mean oscillation in \overline{D} , or the condition $\beta(x_0)$

 $\int_{0}^{\beta(x_0)} \frac{dt}{t^{\frac{n-1}{p-1}} q_{x_0}^{\frac{1}{p-1}}(t)} = \infty, \text{ holds for some } \beta(x_0) > 0 \text{ and every point } x_0 \in \overline{D},$

then each $f \in \mathfrak{F}_{Q,A,p,\delta}(D)$ has a continuous extension $\overline{f}: \overline{D}_P \to \mathbb{R}^n$, and the family $\mathfrak{F}_{Q,A,p,\delta}(\overline{D})$, consisting of all extended mappings, is equicontinuous in \overline{D}_P .