On regular solutions of the Dirichlet problem for the Beltrami equations

Igor Petkov

(Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine) *E-mail:* igorpetkov@i.ua

Vladimir Ryazanov

(Institute of Applied Mathematics and Mechanics of National Academy of Sciences of Ukraine; Bogdan Khmelnytsky National University of Cherkasy, Physics Dept., Lab. of Math. Physics)

E-mail: Ryazanov@nas.gov.ua, vl.ryazanov1@gmail.com

Recall that a **Beltrami equation** in a domain $D \subseteq \mathbb{C}$ is an equation of the form $f_{\bar{z}} = \mu(z) f_z$, where $\mu : D \to \mathbb{C}$ is a measurable function with $|\mu(z)| < 1$ a.e., $f_{\bar{z}} = (f_x + if_y)/2$, $f_z = (f_x - if_y)/2$, z = x + iy, and f_x and f_y are partial derivatives of f in x and y, correspondingly. The Beltrami equation is said to be **degenerate** if ess sup $K_{\mu}(z) = \infty$, where $K_{\mu}(z) = (1 + |\mu(z)|)/(1 - |\mu(z)|)$. Note that the Beltrami equation is a complex form of one of the main equations of the mathematical physics in anisotropic and inhomogeneous media.

A regular solution of the Beltrami equation is a continuous, discrete and open mapping $f: D \to \mathbb{C}$ of the Sobolev class $W_{\text{loc}}^{1,1}$ with its Jacobian $J_f(z) = |f_z|^2 - |f_{\bar{z}}|^2 \neq 0$ a.e. satisfying the equation a.e. Recall that a mapping $f: D \to \mathbb{C}$ is called **discrete** if the preimage $f^{-1}(y)$ consists of isolated points for every $y \in \mathbb{C}$, and **open** if f maps every open set $U \subseteq D$ onto an open set in \mathbb{C} .

We show that the Dirichlet problem with continuous boundary data in Jordan domains has regular solutions for a wide circle of the degenerate Beltrami equations, see many criteria in [1]-[4], for instance:

Theorem 1. Let D be a Jordan domain in \mathbb{C} , $\varphi : \partial D \to \mathbb{R}$ be a continuous function, $\varphi(\zeta) \not\equiv \text{const}$, and $\mu : D \to \mathbb{C}$ be a measurable function with $|\mu(z)| < 1$ a.e. satisfying the integral condition

$$\int_{D} \Phi\left(K_{\mu}(z)\right) \, dm(z) < \infty \tag{1}$$

for a convex non-decreasing function $\Phi : [0, \infty] \to [0, \infty]$ such that, for some $\delta > 0$,

$$\int_{\delta}^{\infty} \log \Phi(t) \frac{dt}{t^2} = +\infty .$$
⁽²⁾

Then the Beltrami equation has a regular solution with $\lim_{z\to\zeta} \operatorname{Re} f(z) = \varphi(\zeta)$ for all the points $\zeta \in \partial D$. **Corollary 2.** In particular, the conclusion of Theorem 1 holds if, for some $\alpha > 0$,

$$\int_{D} e^{\alpha K_{\mu}(z)} dm(z) < \infty.$$
(3)

References

- D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov. The Dirichlet problem for the Beltrami equations. Proceedings of Inst. Appl. Math. Mech. of Nat. Acad. Sci. of Ukraine, 23: 120–129, 2011.
- [2] D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov. On the Dirichlet problem for the Beltrami equations in finitely connected domains. Ukrainian Math. J., 64, no. 7: 1064– 1077, 2012.
- [3] Denis Kovtonyuk, Igor Petkov, Vladimir Ryazanov. On the Dirichlet problem for the Beltrami equation. J. Anal. Math., 122: 113–141, 2014.
- [4] Vladimir Gutlyanskii, Vladimir Ryazanov, Uri Srebro, Eduard Yakubov. The Beltrami equation. A geometric approach, volume 26 of Developments in Mathematics, New York: Springer, 2012.