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Jerzy Dydak

Coverings and fundamental groups: a
new approach

Classical fundamental groups behave reasonably well for Poincaré spaces
(i.e.. semy-locally simply connected spaces). One has a construction of the
universal covering for such spaces. For arbitrary spaces it is a different
matter.
We define monodromy groups π(p, b0) for any map p : E → B with the path
lifting property and any b0 ∈ B. p is called a P-covering, where P is a class
of Peano spaces (i.e., connected and locally path connected spaces), if it has
existence and uniqueness of lifts of maps f : X → B for any X ∈ P. For
any B there is the maximal P-covering pP : BP → B and its monodromy
group is called the P-fundamental group of (B, b0). In case of P consisting
of all disk-hedgehogs we construct a universal covering theory of all spaces
in analogy to the classical covering theory of Poincaré spaces.

COVERINGS AND FUNDAMENTAL GROUPS: A NEW
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Abstract. Classical fundamental groups behave reasonably well for Poincaré

spaces (i.e., semi-locally simply connected spaces). One has a construction of
the universal covering for such spaces. For arbitrary spaces it is a different

matter.

We define monodromy groups π(p, b0) for any map p : E → B with the
path lifting property and any b0 ∈ B. p is called a P-covering, where P is

a class of Peano spaces (i.e., connected and locally path connected spaces), if

it has existence and uniqueness of lifts of maps f : X → B for any X ∈ P.
For any B there is the maximal P-covering pP : B̃P → B and its monodromy

group is called the P-fundamental group of (B, b0). In case of P consisting
of all disk-hedgehogs we construct a universal covering theory of all spaces in
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1. Introduction

The traditional approach of defining the fundamental group first and then con-
structing universal coverings works well only for the class of Poincaré spaces. For
general spaces there were several attempts to define generalized coverings (see [1],
[3], and [12]), yet there is no general theory so far that covers all path connected
spaces. In this paper we plan to remedy that by changing the order of things: we
define the universal covering first and its group of deck transformations is the new
fundamental group of the base space.

Date: July 16, 2011.
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Key words and phrases. universal covering maps, locally path-connected spaces.
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The basic idea is that a non-trivial loop ought to be detected by a covering (not
by extension over the unit disk): a loop is non-trivial if there is a covering such
that some lift of the loop is a non-loop.

So it remains to define coverings: the most natural class is the class of maps that
have unique disk lifting property. To make the theory work one needs to add the
assumption that path components of pre-images of open sets form a basis of the
total space.

2. Coverings and deck transformations

Maps are synonymous with continuous functions.

Definition 2.1. Let P be a class of spaces. A map p : E → B has P-lifting
property if for any e0 ∈ E and any map f : (X,x0) → (B, p(e0)), where X ∈ P,
there is a map g : X → E such that p ◦ g = f and g(x0) = e0.
p is a P-covering (or a P covering) if it has the P-lifting property and all lifts

are unique. That means g = h if g, h : X → E, p ◦ g = p ◦ h, and g(x0) = h(x0) for
some x0 ∈ X ∈ P.

Of special interest are arc-coverings (P consists of the unit interval I), disk-
coverings (P consists of the unit disk D2), and hedgehog-coverings (see 3.1 for the
definition of hedgehogs).

Definition 2.2. A topological space X is an lpc-space if it is locally path-
connected. X is a Peano space if it is locally path-connected and connected.

Problem 2.3. Suppose p : E → D2 is an arc-covering for some Peano space E.
Is p a homeomorphism?

The most fundamental example of a covering is that of the identity function
id : P (X) → X from the Peanification P (X) of X to X (see [3]). P (X) is
obtained from X by changing its topology to the one whose basis consist of path-
components of open sets in X. id : P (X) → X is a P-covering for the class P of
all Peano spaces.

Proposition 2.4. If p : E → B is an arc-covering and E is path-connected, then
the fibers of p are T1 spaces.

Proof. A space F is T1 if each point is closed in it. Equivalently, for any two
different points a, b ∈ F there is an open subset of F containing a but not b.

Suppose e0, e1 ∈ p−1(b0) are two different points such that every neighborhood
of e0 contains e1. Choose a path α from e0 to e1 in E. Consider the loop β
obtained from α by changing the value at 1 from e1 to e0. Notice β is continuous
(β−1(U) = α−1(U) for all open subsets U of E) and is a lift of the same path as α,
yet ending at a different point, a contradiction. �
2.1. The monodromy group. Suppose p : E → B is an arc-covering and b0 ∈ B.
Any loop α at b0 induces a function from the fiber F = p−1(b0) to itself that we
denote by x→ α · x. Namely, we lift α to α̃ starting at x and we put α · x = α̃(1).
Notice the function x→ α · x is a bijection: it inverse is x→ α−1 · x, where α−1(t)
is defined as α(1− t) (in other words, α−1 is the reverse of α). We say that α acts
on F . Notice the composition of α acting on F and β acting on F is the action of
the concatenation α ∗ β on F . The basic idea is to identify any two loops that act
on F the same way.
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Definition 2.5. Suppose p : E → B is an arc-covering and b0 ∈ B. The mon-
odromy group π(p, b0) of p at b0 is the set of equivalence classes of loops in B at

b0: α ∼ β if and only for any two lifts α̃ (of α) and β̃ (of β) one has α̃(1) = β̃(1) if

α̃(0) = β̃(0). The group operation is induced by concatenation: [α] · [β] := [α ∗ β].

Remark 2.6. Notice the above equivalence of loops can be easily extended to the
concept of equivalence of paths in B starting at b0. We will use that equivalence
throughout the paper. In particular, by α · x we mean α̃(1), where α̃ is the lift of
α starting at x.

Notice [α] is the trivial element of π(p, b0) if and only if all its lifts are loops.
Notice that, if p is a disk-covering, then any null-homotopic loop of (B, b0)

represents the trivial element of π(p, b0) and there is a natural homomorphism
π1(B, b0)→ π(p, b0) that is surjective.

It is easy to show that π(p, b0) and π(p, b1) are isomorphic just as in the case of
classical fundamental groups of spaces.

2.2. The deck transformation group.

Definition 2.7. Given a map p : E → B its deck transformation group
DTG(p) is the group of homeomorphisms h : E → E such that p ◦ h = h.

Proposition 2.8. If p : E → B is an arc-covering and E is path-connected, then
the group of deck transformations DTG(p) of p acts freely on E.

Proof. Suppose g(e) = e for a deck transformation g. For any x ∈ E pick a
path α from e to x. Both α and g ◦ α are lifts of p ◦ α originating at e. Therefore
x = α(1) = (g ◦ α)(1) = g(x) and g ≡ idE . �
Definition 2.9. An arc-covering p : E → B is regular if for any loop α in B all
its lifts are either all loops or all non-loops. This is the same as saying that π(B, b0)
acts freely on the fiber F = p−1(b0).

Notice that, if B is path-connected, regularity of p depends only on loops at a
specific point. If no loop at b0 ∈ B has mixed lifts, then no loop at another point
b ∈ B has mixed lifts.

Proposition 2.10. If p : E → B is a regular arc-covering and E is path-connected,
then for any e0 ∈ E there is a natural monomorphism DTG(p) → π(p, b0), b0 =
p(e0). The monomorphism is an isomorphism if DTG(p) acts transitively on the
fibers of p.

Proof. For any h ∈ DTG(p) choose a path αh in E from e0 to h(e0). Since
p is a regular arc-covering, the equivalence class [p ◦ αh] does not depend on the
choice of αh. If g ∈ DTG(p), then αg ∗ g(αh) is a path from e0 to g(h(e0)) and
[p(αg ∗ g(αh))] = [p(αg) ∗ p(αh)], so it is indeed a homomorphism.

If DTG(p) acts transitively on the fibers of p and [α] ∈ π(p, b0), then lift α to α̃
and pick a deck transformation h such that h(α̃(0)) = h(α̃(1)). Notice h is mapped
to α. �
Problem 2.11. Characterize continuous group actions G on a Peano space E such
that the projection p : E → E/G is an arc-covering.

Problem 2.12. Characterize continuous group actions G on a Peano space E such
that the projection p : E → E/G is a disk-covering.
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3. Hedgehog coverings

Definition 3.1. A directed wedge (see [3]) is the wedge
(Z, z0) =

∨
s∈S

(Zs, zs) of pointed Peano spaces indexed by a directed set S and

equipped with the following topology (all wedges in this paper are considered with
that particular topology):

(1) U ⊂ Z \ {z0} is open if and only if U ∩ Zs is open for each s ∈ S,
(2) U is an open neighborhood of z0 if and only if there is t ∈ S such that

Zs ⊂ U for all s > t and U ∩ Zs is open for each s ∈ S.

A arc-hedgehog is a directed wedge (Z, z0) =
∨
s∈S

(Zs, zs) such that each (Zs, zs)

is homeomorphic to (I, 0). The standard arc-hedgehog is the arc-hedgehog over
the set of natural numbers N .

A disk-hedgehog is a directed wedge (Z, z0) =
∨
s∈S

(Zs, zs) such that each Zs is

homeomorphic to the 2-disk D2.

A typical construction of an arc-hedgehog and its map to a space X is the
following:

Proposition 3.2. Let x0 ∈ X. Suppose {αV : IV = [0, 1]→ X}V ∈S is a family of
paths in X indexed by a basis S of open neighborhoods V of x0 in X. If αV (I) ⊂ V
and αV (0) = x0 for all V ∈ S and S is ordered by inclusion (U ≤ V means V ⊂ U),
then the natural function α =

∨
V ∈S

αV :
∨

V ∈S
(IV , 0)→ X is continuous.

Proof. α−1(U) is certainly open if x0 /∈ U . If x0 ∈ U , then IV ⊂ α−1(U) for all
V ⊂ U , so α is indeed continuous. �
Corollary 3.3. Suppose f : Y → X is a function from an lpc-space Y . f is con-
tinuous if f ◦ g is continuous for every map g : Z → Y from an arc-hedgehog Z to
Y .

Proof. Assume U is open in X and x0 = f(y0) ∈ U . Suppose for each path-
connected neighborhood V of y0 in Y there is a path αV : (I, 0)→ (V, y0) such that
αV (1) /∈ f−1(U). Notice the wedge α =

∨
V ∈S

αV is a map from an arc-hedgehog

to Y by 3.2 (here S is the family of all path-connected neighborhoods of y0 in Y ).
Hence h = f ◦g is continuous and there is V ∈ S so that IV ⊂ h−1(U). That means
f(αV (I)) ⊂ U , a contradiction. �
Remark 3.4. If X is first countable (it has a countable basis at each point) in 3.2
or Y is first countable in 3.3, then it is sufficient to use the standard arc-hedgehog
only.

Theorem 3.5. If p : E → B is an arc-covering, then the following conditions are
equivalent:

a. p is an arc-hedgehog covering,
b. given an open subset U of E containing e0, there is a neighborhood V of b0

in B such that the path component of p−1(V ) containing e0 is a subset of
U .

Proof. a) =⇒ b). Suppose, for every neighborhood V of b0 in B, there is a
path αV in p−1(V ) joining e0 with a point in E \ U . The function α =

∨
V ∈S

αV :
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H =
∨

V ∈S
IV → E is continuous as p ◦α is continuous and α is the only possible lift

of p ◦ α at e0. However, the point-inverse of U under α contains e0 but none of IV
is contained in it, a contradiction.

b) =⇒ a). Suppose α =
∨
s∈S

αs :
∨
s∈S

Is → B is a map of an arc-hedgehog

with the base-point mapped to b0 = p(e0). The only possible lift β of α must be
obtained by lifting each αs separately. The only issue is the continuity of β at the
base-point. Given a neighborhood U of e0 in E, pick a neighborhood V of b0 in B
with the property that the path component P of p−1(V ) containing e0 is a subset
of U . Pick an open subset W of the base-point of H satisfying W ⊂ α−1(V ) so
that W is path-connected. Notice β(W ) ⊂ P ⊂ U , which means β is continuous at
the base-point of H. �

Corollary 3.6. If B is first countable and p : E → B is an arc-covering with E
being a Peano space, then p is an arc-hedghehog covering.

Proof. Suppose b0 ∈ B and {Un} is a decreasing basis of neighborhoods of b0 in
B. Given e ∈ F = p−1(b0) and a neighborhood V of e in E, assume that for every
n ≥ 1 there is a path αn in p−1(Un) joining e to a point en ∈ E \ V . Consider the
infinite concatenation p(α1) ∗ p(α−11 ) ∗ p(α2) ∗ p(α−12 ) ∗ . . . which we assume ends
at b0. The lift γ of β starting at e cannot be a loop as γ−1(V ) does not contain
any en. So it ends at a different point of F . Pick a neighborhood W of γ(1) not
containing e (see 2.4). γ−1(W ) is a neighborhood of 1 in [0, 1]. Therefore infinitely
many paths αn lie in W , a contradiction. �

Corollary 3.7. If p : E → B is an arc-hedgehog covering and E is a Peano space,
then the fibers of p are regular (T3-spaces) 0-dimensional spaces.

Proof. By 2.4, fibers of p are T1-spaces, so, given x /∈ A in a fiber F (and A
being closed in F ), there is an open neighborhood V of p(x) = p(y) such that the
path component W of p−1(V ) containing x does not intersect A. The restriction
W ∩ F of W to F is an open-closed subset of F containing x and missing A. �

Corollary 3.8. Arc-hedgehog coverings p : E → B are open if both E and B are
locally path-connected.

Proof. Suppose U is open in E and e0 ∈ U . Put b0 = p(e0) and F = p−1(b0). By
3.5 there is a path-connected neighborhood V of b0 such that the path-component
of e0 in p−1(V ) is a subset of U . Therefore V ⊂ p(U) (connect e0 with a path to
any point in V and then lift the path - it must be contained in U). �

Here is an important supplement to 2.10:

Theorem 3.9. Suppose p : E → B is an arc-hedgehog covering. If E is a Peano
space, then p is regular if and only if the deck transformation group DTG(p) acts
transitively on the fibers of p.

Proof. If DTG(p) acts transitively on the fibers of p, then for any two lifts α
and β of the same loop in B there is a deck transformation h such that h ◦ α = β.
Hence they are either both loops or both non-loops.

Suppose p is regular and e1, e2 ∈ E with p(e1) = e2. Given x ∈ E choose a path
αx in E from e1 to x and let βx be the path from e2 to h(x) with the property
p ◦ αx = p ◦ βx. Notice h(x) does not depend on the choice of αx as p is regular.
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The reason h is continuous is that h ◦ f is continuous for any map f from an
arc-hedgehog to E. Since analogous construction creates the inverse of h, it is a
homeomorphism. �

Proposition 3.10. Suppose p : E → B is an arc-hedgehog covering of Peano
spaces. If B is metrizable, then E is metrizable.

Proof. Denote r-balls in B centered at b by B(b, r). Define d(x, y) as the
infimum of r > 0 such that there is a path α from x to y in E with p(α([0, 1])) ⊂
B(p(x), r) ∩ B(p(y), r). Clearly, d is symmetric. Also, d(x, y) = 0 implies x = y.
Indeed, p(x) = p(y) and x 6= y would imply existence of a neighborhood U of p(x)
in B such that no path in U can be lifted to a path from x to y (see 3.5).

The proof of the Triangle Inequality is left to the reader.
Given x ∈ U , U open in E, find an r > 0 such that the path component of

p−1(B(p(x), r)) containing x is contained in U (see 3.5). Therefore the r-ball of
metric d centered in x is contained in U .

Consider the r-ball Bd(x, r) in d centered at x ∈ E. Look at the path-component
U of p−1(B(p(x), r/2)) containing x. It must be contained in Bd(x, r) which com-
pletes the proof. �

Proposition 3.11. If p : E → B an arc-hedgehog covering, E is Peano, and B
has a countable basis at b0, then F = p−1(b0) is a Baire space.

Proof. Let {Un} be a basis of open sets at b0 that forms a decreasing sequence.
We plan to show that, given a decreasing sequence {Vn} of path-components Vn

of p−1(Un), the intersection F ∩
∞⋂

n=1
Vn is not empty. By induction, pick points

en ∈ Vn and paths αn in Vn joining en with en+1. The infinite concatenation
p(α1) ∗ p(α2) ∗ . . . (its end-point is declared to be b0) is a path α in U1. Lift α

starting at e1 and notice the end-point of the lift belongs to F ∩
∞⋂

n=1
Vn. �

Remark 3.12. Combining the proofs of 3.10 and 3.11 one can show E is completely
metrizable if B is completely metrizable and both E and B are Peano spaces.

Definition 3.13. Suppose p : E → B is an arc-hedgehog covering of Peano spaces.
p is trivial at b0 if there is a connected neighborhood U of b0 in B such that p
maps each component of p−1(U) homeomorphically onto U .

Theorem 3.14. Suppose p : E → B is a regular arc-hedgehog covering of Peano
spaces. p is trivial at b0 if and only if the fiber F = p−1(b0) contains an isolated
point.

Proof. One direction is obvious, so assume F has an isolated point e ∈ F .
Choose a connected neighborhood U of b0 in B such that the path component V
of p−1(U) containing e does not intersect F \ {e}) (see 3.5). Notice p maps V
homeomorphically onto U . Indeed, p(V ) = U (lift a path from b0 to any x ∈ U
starting from e to arrive at y ∈ V such that p(y) = x) and p|V has to be injective:
if p(y) = p(z) = b for two different points y, z ∈ V , then there is a path β in V
from y to z such that p ◦ β is a loop and picking a path γ from e to y in V results
in a loop p(γ) ∗ p(β) ∗ p(γ−1) in U that has a lift in V starting at e and ending at
a different point contrary to V ∩ F = {e}.
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Consider another component W of p−1(U). Using 3.9 one can see there is a deck
transformation h such that h(V ) = W . Therefore p|W : W → U is a homeomor-
phism as well. �

Proposition 3.15. If p : E → B is an arc-hedgehog covering, then p is a disk-
hedgehog covering if and only if it is a disk covering.

Proof. It only suffices to consider the case p is a disk-covering (the other
implication is obvious). Given a map f : H → B from a disk-hedgehog to B and
given e ∈ E in the fiber of p over the base-point there is only one candidate for
the lift of f . That candidate must be continuous as otherwise we would generate a
map from an arc-hedgehog to B that has no lift at e. �

4. The whisker topology

In this section we are generalizing the whisker topology that was introduced in
[3] in a special case.

Definition 4.1. Let B be a space and b0 ∈ B. Suppose ∼ is an equivalence
relation on the set of loops in B at b0 which induces a group structure on the set
of equivalence classes via [α] · [β] := [α ∗ β] with the constant loop at b0 being the
neutral element and [α]−1 = [α−1] for all loops α, β at b0.

The above can be summarized as follows:

1. α ∼ β and γ ∼ ω implies α ∗ γ ∼ β ∗ ω for all loops α, β, γ, ω at b0,
2. α∗α−1 ∼ const and α ∼ α∗const for all loops α, where α−1 is the reversed

path of α.

The above equivalence relation can be extended to an equivalence relation on the
set of all paths in B originating at b0: α ∼ β means α(1) = β(1) and α∗β−1 ∼ const.

By the whisker topology on the space P (B, b0,∼) of equivalence classes [α] we
mean the topology with the basis N([α], U), U an open set in B containing α(1),
consisting of all [β] such that β ∼ α ∗ γ for some path γ in U

Theorem 4.2. a. P (B, b0,∼) is a Peano space and the end-point projection
p : P (B, b0,∼)→ B has arc-lifting property.

b. p is an arc-hedgehog covering if and only if it is an arc-covering.
c. p is a disk-hedgehog covering if and only if it is an arc-covering and α ∼
const for every loop α at b0 that is null-homotopic.

Proof. a. Notice λ ∈ N([α], U)∩N([β], V ) implies N([λ], U ∩V ) ⊂ N([α], U)∩
N([β], V ), so it is indeed a topology.

Given α at any point of B let αt be the path equal to α on the interval [0, t]
and then being a constant path. If γ is a path in U originating at α(1), then
each [α ∗ γt] ∈ N([α], U) and t → [α ∗ γt] is continuous (indeed, the inverse of
N([α ∗ γt], V ) contains the interval around t that is mapped under γ to V ). That
means P (B, b0,∼) is a Peano space. At the same time it implies p has arc-lifting
property.

b. Suppose p is an arc-covering, U is open in B, and α is a path in B starting at
b0 and ending at a point in U . It suffices to show N([α], U) is the path component of
p−1(U) containing [α]. Suppose γ̃ is a path in p−1(U) starting at [α]. Put γ = p◦ γ̃
and notice t → [α ∗ γt] is another lift of γ. Thus γ̃(t) = [α ∗ γt] for all t proving
that γ̃ is a path in N([α], U). In view of 3.5, p is an arc-hedgehog covering.
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c. Assume p is an arc-covering and α ∼ const for every loop α at b0 that is
null-homotopic. In view of b) and 3.15 it suffices to show p is a disk-covering.

Suppose f : D2 → B and α is a path in B from b0 to f(d) for some d ∈ D2.
Given x ∈ D2 let βx be a path in D2 from d to x. Define g(x) ∈ P (B, b0,∼) as
g(x) = [α ∗ (f ◦ βx)] and notice g(x) does not depend on the choice of βx. Given
a map u : H → D2 from an arc-hedgehog, g ◦ u is the lift of f ◦ u, hence it is
continuous. Therefore g is continuous. �

Here is an inner description of arc-hedghehog coverings:

Theorem 4.3. Suppose E is a Peano space. If p : E → B is an arc-hedgehog
covering and b0 ∈ B, then p is equivalent to the end-point projection P (B, b0,∼)→
B, where P (B, b0,∼) is equipped with the whisker topology.

Proof. Pick e0 ∈ E with p(e0) = b0 and declare two paths α and β in B
originating at b0 equivalent if α · b0 = β · b0.

Given a point x ∈ E choose a path αx in E from e0 to x and define h : E →
P (B, e0) by h(x) = [p ◦ αx].

Since h−1(N([αx], U)) is the path-component of p−1(U) containing x, it is open
in E and h is continuous.

If U is an open neighborhood of x in E, choose an open neighborhood V of
p(x) with the property that the path component W of x in p−1(V ) is contained in
U . Notice N([αx], V ) ⊂ h(W ) ⊂ h(U), so h is open. Since h is bijective, it is a
homeomorphism. �

5. Supremums of coverings

Two coverings p1 : E1 → B and p2 : E2 → B are said to be equivalent if there
is a homeomorphism h : E1 → E2 satisfying p2 ◦ h = p1. It turns out there is a
set of coverings over B such that any disk-hedgehog covering over B is equivalent
to one from that set. In that sense we may talk about the set of all disk-hedge
coverings over B.

In this section we define a partial order on the set of all disk-hedgehog coverings
over a fixed path-connected space B and we show this set has a maximum. That
maximum plays the role of the universal covering space.

Definition 5.1. Suppose E1, E2 are Peano spaces and p1 : E1 → B, p2 : E2 → B
are disk-hedgehog coverings. We define the inequality (p1, e1) ≥ (p2, e2) of pointed
coverings as follows: p1(e1) = p2(e2) and there is a continuous function f : E1 → E2

satisfying p2 ◦ f = p1 and f(e1) = e2.
We define the inequality of unpointed coverings p1 ≥ p2 as follows: for every

points e1 ∈ E1 and e2 ∈ E2 such that p1(e1) = p2(e2) we have (p1, e1) ≥ (p2, e2).

Lemma 5.2. If (p1, e1) ≥ (p2, e2) and (p2, e2) ≥ (p1, e1), then there is a homeo-
morphism h : E2 → E1 such that h(e2) = e1 and p1 ◦ h = p2.

Proof. Choose continuous functions f : E1 → E2 and g : E2 → E1 such that
p2 ◦ f = p1, p1 ◦ g = p2 and f(e1) = e2, g(e2) = e1. As p1 ◦ (g ◦ f) = p1 and
(g ◦ f)(e1) = e1, we get g ◦ f = idE1

. Similarly, f ◦ g = idE2
. �

Lemma 5.3. If p1 is a regular disk-hedgehog covering and (p1, e1) ≥ (p2, e2), then
p1 ≥ p2.
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Proof. Choose a continuous function f : E1 → E2 such that p2 ◦f = p1. Notice
f is surjective. Given x1 ∈ E1 and x2 ∈ E2 satisfying p1(x1) = p2(x2) choose a
deck transformation h : E1 → E1 so that h(x1) ∈ f−1(x2) (see 3.9). Put g = f ◦ h
and notice p2 ◦ g = p1, g(x1) = x2. �
Corollary 5.4. p ≥ p if and only if p is regular.

Proof. In view of 5.3 it suffices to show p is regular if p ≥ p. That follows from
3.9 as any f : E → E satisfying p ◦ f = p must be a homeomorphism. �
Definition 5.5. Suppose {ps : Es → B}s∈S is a family of disk-hegehog coverings
of Peano spaces over a path-connected B and es ∈ Es so that ps(es) = b0 for all
s ∈ S. (p, e) is the supremum of {(ps, es)}s∈S if (p, e) ≥ (ps, es) for all s ∈ S and
(p, e) is the smallest pointed covering with that property.

Definition 5.6. Suppose {ps : Es → B}s∈S is a family of disk-hegehog coverings
of Peano spaces over a path-connected B and es ∈ Es so that ps(es) = b0 for all
s ∈ S.

The Peano fibered product of {(ps, es)}s∈S is the pair (p, e), where p : E → B,
e = {es}s∈S , and E is the Peanification of the path-component of e in the subset of∏
s∈S

Es consisting of points {xs}s∈S such that ps(xs) = pt(xt) for all s, t ∈ S. The

projection p is defined by p({xs}s∈S) = pt(xt) for any t ∈ S.

Proposition 5.7. Peano fibered product of a family of pointed disk-hedgehog cov-
erings is the supremum of that family.

Proof. If q : E′ → B and (q, e′) ≥ (ps, es) for all s ∈ S, then there are maps
gs : E′ → Es so that q = ps ◦ gs and gs(e

′) = es for each s ∈ S. The collection
{gs}s∈S induces a map g : E′ → E satisfying g(e′) = e and p ◦ g = q. Thus
(q, e′) ≥ (p, e).

Suppose b0 = p({es}s∈S), {es}s∈S ∈ E, and f : (H, 0) → (B, b0) is a map from
a disk-hedgehog. Create lifts fs : (H, 0) → (Es, es) of f with respect to ps. That
defines a map f : H → E by f(x) = {fs(x)}s∈S that is a lift of f with respect to p.

That proves existence of lifts - a proof of uniqueness is obvious. �
Proposition 5.8. If p : E → B is a disk-hedgehog covering and e0 ∈ E, then the
Peano fibered product of all p : (E, e)→ (B, p(e0)), e ranging over all points in the
fiber F of p containing e0, is regular.

Proof. Suppose α is a loop in B at b0 = p(e0) such that for some {xe}e∈F in
the fiber of q, α · {xe}e∈F = {xe}e∈F . That means α · xe = xe for all e ∈ F .

Since both {xe}e∈F and {e}e∈F can be joined by a path in the Peano fibered
product, there is a loop β at b0 in B such that β ·{e}e∈F = {xe}e∈F . Thus β ·e = xe
and (α ∗ β) · e = β · e for all e ∈ F . Plugging in β−1 · e ∈ F for e in the equation
(α ∗ β) · e = β · e gives α · e = e for all e ∈ F . That implies α · {ye}e∈F = {ye}e∈F
for all {ye}e∈F in the fiber of q, i.e. q is regular. �

Notice the Peano fibered product of all z → zn is the covering t→ exp(2πti) of
reals over the unit circle.

Corollary 5.9. Every path-connected space B has a maximal disk-hedgehog cover-
ing among those with total space being Peano. It is a regular covering.

Proof. Pick b0 and consider the space of paths P (B, b0) in B starting at b0.
For every disk-hedgehog covering p : E → B, E is an image of a function from
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P (B, b0) obtained by lifting paths (the lifts start at e0 ∈ p−1(b0). That means
there is a set {ps : Es → B}s∈S of disk-hedgehog coverings with the property that
for any disk-hedgehog covering p : E → B there is s ∈ S and a homeomorphism
h : E → Es such that p = ps ◦ h. We only consider disk-hedgehog with Peano total
space. Take the Peano fibered product of {ps : Es → B}s∈S . It must be a regular
disk-hedge covering but it is easier to use 5.8 and produce the maximal covering
that is regular. �

6. Hedgehog fundamental group

Definition 6.1. Given a path-connected space B and b0 ∈ B define the hedgehog
fundamental group π(B, b0) of (B, b0) as the monodromy group π(p, b0), where
p : E → B is the maximal disk-hedgehog covering over B.

Proposition 6.2. Any map f : B1 → B2 of path-connected spaces induces a natural
homomorphism from π(B, b1) to π(B2, f(b1)).

Proof. Let f(b1) = b2. Consider the maximum disk-hedgehog covering p2 :
E2 → B2 and pick e2 ∈ p−12 (b2). Take the path-component of (b1, e2) in {(x, y) ∈
B1 × E2|f(x) = p2(y)}, Peanify it to get E and let q : E → B1 be the projection
onto the first coordinate. Notice q is a disk-hedgehog covering. Let p : E1 → E be
the maximum disk-hedgehog covering over E. Notice p1 = q ◦ p is the maximum
disk-hedgehog covering over E1. If a loop α in B1 at b1 has all lifts to E1 that
are loops, then all lifts of α to E must be loops. Given a lift β in E2 of f ◦ α,
the map t → (α(t), β(t)) is a lift of α in E. As it is a loop, β must be a loop as
well. Consequently, if two loops in B1 at b1 are similar, so are their images in B2

which is sufficient to conclude there is a natural homomorphism from π(B, b1) to
π(B2, f(b1)). �
Proposition 6.3. If p : E → B is a regular disk-hedgehog covering and p(e0) = b0,
then one has a natural exact sequence

1→ π(E, e0)→ π(B, b0)→ π(p, b0)→ 1

Proof. Choose a maximal disk-hedgehog covering p1 : E1 → E over E, where
E1 is a Peano space. Notice p ◦ p1 is a maximal disk-hedgehog covering over B.

The kernel of π(B, b0)→ π(p, b0) consists exactly of loops whose all lifts to E are
loops. In particular, the kernel is contained in the image of π(E, e0) → π(B, b0).
Obviously, the image of π(E, e0)→ π(B, b0) is contained in that kernel.

Any loop in E at e0 that becomes trivial in π(B, b0) must have all lifts in E1 as
loops. That means π(E, e0)→ π(B, b0) is a monomorphism. �
Theorem 6.4. Suppose p : E → B is a disk-hedgehog covering of path connected
spaces. Suppose f : X → B is a map from a Peano space, x0 ∈ X and e0 ∈ E with
f(x0) = b0 = p(e0). f has a lift g : (X,x0) → (E, e0) if and only if the image of
π(X,x0)→ π(B, b0) is contained in the image of π(E, e0)→ π(B, b0).

Proof. Only one implication is of interest, so assume the image of π(X,x0) →
π(B, b0) is contained in the image of π(E, e0)→ π(B, b0).

Given a point x ∈ X pick a path αx in X from x0 to x and define g(x) as αx · e0.
g(x) does not depend on the choice of αx: choosing a different path βx leads to a
loop γ in E at e0 such that [βx∗α−1x ] = [p◦γ] in π(B, b0). Therefore βx ∼ (p◦γ)∗αx

and βx · e0 = ((p ◦ γ) ∗ αx) · e0 = αx · e0 = g(x).
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Given any map q : H → X from a disk-hedgehog H to X, the composition
g ◦ q : H → E is the only possible lift of f ◦ q, hence it is continuous. By 3.3, g is
continuous. �

Corollary 6.5. Suppose p : E → B is a disk-hedgehog covering with E being
Peano and e0 ∈ E. π(E, e0) = 0 if and only if p : E → B is the maximal disk
hedgehog-covering over B.

Proof. If p is maximal, then E does not admit any non-trivial disk-hedgehog
covering and π(E, e0) = 0. If π(E, e0) = 0, then given any other disk-hedgehog
covering q : E1 → B there is a lift g : E → E1 of q proving p is maximal. �

7. Comparison to the classical fundamental group

As the natural homomorphism π1(B, b0) → π(B, b0) is an epimorphism, there
are two natural questions:

Problem 7.1. Characterize the kernel of π1(B, b0)→ π(B, b0) for path-connected
spaces B.

Problem 7.2. Characterize path-connected spaces B such that π1(B, b0)→ π(B, b0)
is an isomorphism.

Since the identity map P (B)→ B from the Peanification of B to B induces iso-
morphisms of both the classical fundamental group and the hedgehog fundamental
group, we will consider both Problems 7.1 and 7.2 for Peano B spaces only. In
particular, we differ with [10] in that regard.

Recall B is shape injective if the natural homomorphism π1(B, b0)→ π̌1(B, b0)
from the classical fundamental group to the Čech fundamental group is a monomor-
phism. Papers [11], [7, Corollary 1.2 and Final Remark], [6], and [9] contain results
that various classes of spaces are shape injective. We will generalize the concept of
shape injectivity as follows:

Definition 7.3. B is residually Poincaré if for every loop α in B that is not
null-homotopic there is a map f : B → P such that P is a Poincaré space and f ◦α
is not null-homotopic.

Proposition 7.4. If B is residually Poincaré, then π1(B, b0) → π(B, b0) is an
isomorphism.

Proof. Clearly, it is so if B is a Poincaré space as it has the classical universal
cover that is simply connected. Given a non-trivial element [α] ∈ π1(B, b0) choose
f(B, b0)→ (P, p0) such that f ◦α is not null-homotopic. If α represents the neutral
element of π(B, b0), then [f ◦ α] is neutral in π(P, p0) = π1(P, p0), a contradiction.

�

Theorem 7.5. Suppose U is an open cover of a paracompact space B consisting of
path-connected sets. If, for each x ∈ B, the inclusion st(x,U)→ B of the star of U
at x induces the trivial homomorphism of π(st(x,U), x) → π(B, x), then π(B, b0)
is isomorphic to the fundamental group of the nerve of U for all b0 ∈ B.

Proof. Pick V0 ∈ U containing b0. For each V ∈ U pick bV ∈ V (bV = b0 if
V = V0).
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Define a map α from the 1-skeleton of the nerve N(U) to B as follows: each
vertex V of the nerve is mapped to bV and each edge VW is mapped to a path
αVW in V ∪W joining bV and bW .

Given an edge-path in the nerve from V0 to V followed by a loop around a triangle
that belongs to the nerve, then followed back by the path-edge results in a loop
that is mapped to the star st(bV ,U) of bV in U , hence α induces a homomorphism
j from π1(N(U), V0) to π(B, b0).

Given a loop λ in B at b0, we can represent it as the concatenation of paths γi,
0 ≤ i ≤ n, such that the carrier of γi is contained in V (i) ∈ U , and V (0) = V0 =
V (n). Pick a path ωi in V (i) joining γi(1) and bV (i). Notice each γi is equivalent to

ωi−1 ∗ αV (i−1)V (i) ∗ ω−1i , so replacing it by that path results in a loop in the image
of j that is equivalent to λ. That proves j is an epimorphism.

To show it is a monomorphism, assume there is an edge-loop in the nerve that
is mapped to a loop in B being trivial in π(B, b0). Choose a partition of unity
φ : B → N(U) sending b0 to V0 ∈ U . The composition of j : π(N(U)) → π(B, b0)
and the homomorphism induced by φ is the identity.

Indeed, for each V ∈ U choose a path βV in N(U) from φ(bV ) to V that lies
in the open star st(V ) of V in N(U). Notice, if V ∩ W 6= ∅, then βV ∗ VW ∗
β−1W ∗ (φ(αVW ))−1 lies in the union st(V ) ∪ st(W ) of open stars in N(U). As their
intersection is contractible, the union is simply connected and the composition of
j : π(N(U))→ π(B, b0) and the homomorphism induced by φ is the identity. �

Corollary 7.6. If B is a paracompact Peano space and π(B, b) is discrete for all
b ∈ B, then for every sufficiently small open cover U of B, π(B, b) is isomorphic
to the fundamental group of the nerve of U for all b ∈ B.

Proof. By 3.14 every point b ∈ B has a path-connected neighborhood Ub such
that the maximal disk-hedgehog covering p : E → B has a section over Ub. That
implies π(Ub, b) → π(B, b) is trivial. Choose a star-refinement V of {Ub}b∈B and
apply 7.5 to any refinement U of V. �

Let us show that the analog of the famous result of Shelah [19] (see also [18])
stating that the fundamental group of a Peano continuum is finitely generated if it
is countable not only holds for the hedgehog fundamental groups but it also has a
much simpler proof.

Corollary 7.7. Suppose B is a Peano continuum. If π(B, b0) is countable for some
b0 ∈ B, then it is finitely presented.

Proof. Consider the maximal disk-hedgehog covering p : E → B. 3.11 says its
fibers are Baire spaces. Since they are countable, they must be discrete. Apply 7.6.

�
Let’s turn to Problem 7.1. First, let us show that every small loop belongs to

the kernel of π1(B, b0)→ π(B, b0). It shows that the hedgehog fundamental group
eliminates some of the pathologies of the classical fundamental group.

Recall (see [21]) that a loop α at b0 in B is called small if it can be homotoped
relative to b0 into any neighborhood U of b0 in B.

Proposition 7.8. Suppose B is path-connected. If p : E → B is a disk-hedgehog
covering, then [α] is the neutral element of π(p, b0) for every small loop α at b0.
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Proof. We may assume E is Peano by switching to its Peanification. Suppose
α is a small loop at b0 in B so that [α] is not the neutral element of π(p, b0). There
is a lift α̃ of α with e0 = α̃(0) 6= e1 = α̃(1).

Choose a path-connected neighborhood U of b0 in B such that the path com-
ponent V of e0 in p−1(U) is different from path-component W of e1 in p−1(U).

Suppose there is a loop β in U homotopic to α rel.b0 in B. Its lift β̃ would join e0
and e1, a contradiction. �

Let’s consider a more general question than 7.1: Characterize kernels of π1(B, b0)→
π(p, b0), where p : E → B is a disk hedgehog covering over a Peano space B.

As in [20, p.81], given an open cover U of X, π(U , x0) is the subgroup of π1(X,x0)
generated by elements of the form [α ∗ γ ∗ α−1], where γ is a loop in some U ∈ U
and α is a path from x0 to γ(0).

Lemma 7.9. Suppose P (B, b0,∼) has a whisker topology such that α ∼ const
implies [α] ∈ π(U , b0) for some open cover U of B. If β(t), t ∈ [0, 1], are paths in
P (B, b0,∼) forming a lift of a path γ starting at [α], then β(t)∗γ−1t ∗α−1 ∈ π(U , b0)
for all t ∈ [0, 1].

Proof. Let S = {t ∈ [0, 1]|β(t) ∗ γ−1t ∗ α−1 ∈ π(U , b0)}. Clearly, 0 ∈ S. It
suffices to show that for any t ∈ S, t < 1, there is s > t such that [t, s] ⊂ S and
that S contains its supremum. Given t ∈ S, t < 1, pick V ∈ U containing γ(t) and
choose a closed interval W = [t, u] in [0, 1], u > t, such that β(s) ∈ N(β(s), V ) for
s ∈ W and γ(s) ∈ V for s ∈ W . Therefore, given s ∈ W , there is a path ω in V
satisfying β(s) ∼ β(t) ∗ ω. Notice ω joins γ(t) and γ(s).

The loop λ = ω∗(γ|[t, s])−1 lies in V and β(s)∗γ−1s ∗α−1 ∼ β(t)∗ω∗γ−1s ∗α−1 ∼
β(t)∗λ∗(γ|[t, s])∗γ−1s ∗α−1 ∼ β(t)∗λ∗γ−1t ∗α−1 ∼ (β(t)∗γ−1t ∗α−1)∗α∗γt∗λ∗γ−1t ∗α−1
and the last loop belongs to π(U , b0).

The same argument proves that the supremum of S belongs to S (we only used
that s and t are sufficiently close). �
Proposition 7.10. Let B be a Peano space. If p : E → B is a covering projection,
then the kernel of π1(B, b0) → π(p, b0) contains π(U , b0), where U consists of all
open subsets U of B that are evenly covered.

Given an open cover U of B, the set of covering projections q : E → B for which
each U ∈ U is evenly covered has a maximum p and the kernel of π1(B, b0) →
π(p, b0) is exactly π(U , b0).

Proof. Obviously, elements of the form [α ∗ γ ∗ α−1], where γ is a loop in some
U ∈ U and α is a path from b0 to γ(0) have a lift to E that is a loop, so they are
trivial in π(p, b0).

Consider the end-point projection p : P (B, b0,∼) → B (α ∼ β if and only if
[α ∗ β−1] ∈ π(U , b0)). It is a classical covering with each member of U being evenly
covered (see [3] or use 7.9 to deduce it has unique path-lifting property and then
construct sections over members of U). Notice the kernel of π1(B, b0) → π(p, b0)
is exactly π(U , b0). Indeed, if a loop γ in B lifts to a loop in P (B, b0,∼), then 7.9
says the loop must belong to π(U , b0).

Given any classical covering projection q : E → B with each member of U being
evenly covered one can construct f : P (B, b0,∼)→ E such that q ◦ f = p by lifting
paths. That proves maximality of p. �
Definition 7.11. The intersection of all π(U , b0), U ranging over all open covers
of B, is called the Spanier group of (B, b0) (see [10]).
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By a medium loop we mean a loop α at b0 that is not small and its homotopy
class [α] belongs to the Spanier group. By a big loop we mean a loop α at b0 that
is neither medium nor small.

Proposition 7.12. Let B be a Peano space. If p is the supremum of all classical
coverings over B, then the kernel of π1(B, b0) → π(p, b0) is exactly the Spanier
group.

Proof. Consider the end-point projection p : P (B, b0,∼) → B (α ∼ β if and
only if [α ∗ β−1] ∈ π(U , b0) for all open covers U of B). Use 7.9 to deduce it has
unique path-lifting property and then use 4.2 to show it is a disk-hedgehog covering.
Notice the kernel of π1(B, b0) → π(p, b0) is exactly the Spanier group. Indeed, if
a loop γ in B lifts to a loop in P (B, b0,∼), then 7.9 says the loop must belong to
π(U , b0) for all open covers U of B.

Given any classical covering projection q : E → B with each member of U being
evenly covered one can construct f : P (B, b0,∼)→ E such that q ◦ f = p by lifting
paths.

Suppose q : E → B, E Peano, is a disk-hedgehog covering with q(e) = b0 and
maps fU : E → P (B, b0,∼U ) such that fU ◦ pU = q for each open cover U of B.
Here α ∼U β if and only if [α ∗ β−1] ∈ π(U , b0) and pU is the end-point projection.

Given x ∈ E and two path αx, βx from e to x, the loop αx ∗ β−1x must belong
to the Spanier group as it can be factored through all P (B, b0,∼U ), therefore the
function f(x) = [γαx] (γ a fixed loop at b0 in B) is well-defined and is continuous
as p is an arc-hedgehog covering. As p ◦ f = q, q ≥ p. That proves maximality of
p. �

Corollary 7.13. The the kernel of π1(B, b0) → π(B, b0) contains all small loops
and is contained in the union of small loops and medium loops.

Let us show how direct wedge can be used to construct interesting spaces.
First of all, one can change the topology of the standard arc-hedgehog

∨
n∈N

(In, 0n)

by requiring open neighborhoods of the base-point to contain all but finitely many
0n’s (instead of all but finitely many In’s) and get a connected space that is not
locally connected (a modified topologist’s sine curve).

Second, one can change the topology of the standard disk-hedgehog
∨

n∈N
(D2

n, 0n)

by requiring open neighborhoods of the base-point to contain all but finitely many
∂D2

n’s (instead of all but finitely many D2
n’s) and get a space with properties similar

to Harmonic Archipelago [2]: every loop is small.
It is easy to construct examples of medium loops by connecting two Harmonic

Archipelagos by an arc. However, there is a more interesting example of Fischer-
Zastrow [12] that can be used for that purpose. What is not clear is if that example
does not become trivial once we kill all small loops.

Problem 7.14. Construct a medium loop in a Peano space that does not belong to
the normalizer of all small loops.
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Given co-H-spaces X and Y , B. Gray [13] has defined a co-H-space X ◦ Y
and a natural transformation X ◦ Y → X ∨ Y which leads to a generalized
Whitehead product. We make use of that product and sketch ideas on
its dual to examine cyclic and cocyclic maps. Given spaces X and Y ,
some results on Gottlieb sets G(X,Y ) and dual Gottlieb sets DG(X,Y ) are
stated.

Introduction

The Gottlieb group Gn(X) of a space X is the subgroup of the
homotopy group πn(X) of X consisting of homotopy classes of maps
f : Sn → X such that the map f ∨ idX : Sn ∨ X → X admits an ex-
tension F : Sn × X → X. The study of the properties and structure
of the Gottlieb groups represents a fundamental problem in homotopy
theory dating back to their introduction by D. Gottlieb in the 1960’s

c© Marek Golasiński, Thiago de Melo, 2013
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[8, 10]. Connections between the Gottlieb groups and fixed point the-
ory [8, 15, 22], transformation groups [11, 20], covering spaces [11, 16]
and the homotopy theory of fibrations [9, 12, 21] have been extensively
researched.

The definition of Gn(X) uses the concept of cyclic homotopies. K.
Varadarajan [23] studies the role of cyclic and cocyclic (dual of cyclic)
maps in the set-up of Eckmann-Hilton duality. The set of homotopy
classes of cyclic maps X → Y , denoted by G(X,Y ) is a group provided
X carries an H-cogroup structure. Dually, the set of homotopy classes
of cocyclic maps X → Y , denoted by DG(X,Y ) is a group provided Y

carries an H-group structure. Relationships between these generalized
Gottlieb (dual Gottlieb groups) and the generalized Whitehead product
(the dual generalized Whitehead product) [1] have been considered in
[14, 17, 18, 19] and other various papers.

The aim of this paper is to present those results in the context of
the so called Theriault product considered by B. Gray in [13] being an
extended version of the generalized Whitehead product from [1] and its
dual. The first section expounds the notions and clarify results needed in
next two sections. Section 2 recalls results on cyclic maps and then takes
up the systematic study of these maps in the context of results from [13].

Section 3 is devoted to cocyclic maps. First, their relations with the
dual generalized Whitehead product [1] are summarized. In particular,
a characterization of co-H-spaces in terms of the cocyclicity of maps is
concluded. Then, following mutatis mutandis the construction presented
by B. Gray in [13] and the cotelescope concept, we sketch ideas of the
dual Theriault product extending the dual generalized Whitehead [1]
and relate cocyclic maps to this product. Many results and proofs on
the Theriault product can be dualized. The details will be published
somewhere shortly.

Acknowledgements. This work was started during the visit of the first
author to the Instituto de Geociências e Ciências Exatas, UNESP–Univ
Estadual Paulista, Rio Claro–SP (Brazil) in the period from August 17–
27, 2012. He would like to thank that Institute for its hospitality and
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supporting during his stay.

2 Prerequisites

We concentrate with connected and based spaces having the homo-
topy type of CW -complexes. All maps and homotopies preserve base
points. For simplicity, we sometimes use the same symbol for a map
and its homotopy class. Denote by [X,Y ] the set of homotopy classes of
continuous maps X → Y and write Sn for the n-dimensional sphere. In
particular, let πn(X) = [Sn, X] be the nth homotopy group of a space X
for n ≥ 0.

Next, write ΣX and ΩX for the suspension and the loop space of X.
Recall that ΣX and ΩX are an H-cogroup and an H-group, respectively.
If f : X → Y then for every space Z, we have homomorphisms (Σf)∗ :

[ΣY, Z] → [ΣX,Z] and (Ωf)∗ : [Z,ΩX] → [Z,ΩY ]. Further, there are
canonical natural maps e : ΣΩX → X and e′ : X → ΩΣX.

The following well-known results are frequently used:

Proposition 2.1. (1) If X is a co-H-space, then there is a map s : X →
ΣΩX such that es ' idX ;

(2) If X is an H-space, then there is a map s′ : ΩΣX → X such that
s′e′ ' idX ;

(3) Let X and Y be an H-cogroup and an H-group, respectively. Then,
[X,Z] and [Z, Y ] are groups for any space Z.

Let X[Y be the flat product and X ∧ Y the smash product, that is,
the fibre and the cofibre of the inclusion X ∨ Y ↪→ X × Y . Next, write
∆ : X → X ×X and ∇ : X ∨X → X for the diagonal and folding maps,
respectively.

The Whitehead product [−,−] : πm(X) × πn(X) → πm+n−1(X),
determined by the Whitehead map w : Sm+n−1 → Sm ∨ Sn plays a
crucial role in the homotopy theory. The generalized Whitehead map
w : Σ(X ∧ Y ) → ΣX ∨ ΣY constructed in [1] leads to the generalized
Whitehead product

[−,−] : [ΣX,Z]× [ΣY,Z]→ [Σ(X ∧ Y ), Z].
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Now, let CO be the category of simply connected co-H-spaces and co-H-
maps. In [13], a functor

◦ : CO × CO → CO

(called the Theriault product) and a natural transformation w : X ◦Y →
X ∨ Y for co-H-spaces X,Y generalizing the Whitehead product have
been defined. More precisely, in [13, Theorem 1, Theorem 2] it has been
shown:

Theorem 2.2. There is a functor

◦ : CO × CO −→ CO

and equivalences in CO:
(1) (ΣX) ◦ Y ∼= X ∧ Y ;
(2) Σ(X ◦ Y ) ∼= X ∧ Y ;
(3) (X1 ∨X2) ◦ Y ∼= (X1 ◦ Y ) ∨ (X2 ◦ Y )

and homotopy equivalences:
(4) X ◦ Y ∼= Y ◦X;
(5) (X ◦ Y ) ◦ Z ∼= X ◦ (Y ◦ Z).

Theorem 2.3. There is a natural transformation

w◦ : X ◦ Y −→ X ∨ Y

which is the Whitehead product map in case X and Y are both suspen-
sions. Furthermore, there is a homotopy equivalence

X × Y ∼= (X ∨ Y ) ∪w◦ C(X ◦ Y ),

where (X∨Y )∪w◦C(X ◦Y ) is the mapping cone of w◦ : X ◦Y −→ X∨Y .

Notice that w◦ : X ◦ Y −→ X ∨ Y defines a map

[−,−]◦ : [X,Z]× [Y,Z]→ [X ◦ Y, Z]

for any space Z.
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3 Cyclic maps and evaluation groups

According to [23], a map f : X → Y is said to be cyclic if there exists
a map F : X × Y → Y such that the diagram

X ∨ Y� _

��

∇(f∨idY ) // Y

X × Y

F

88

is homotopy commutative.
Write G(X,Y ) for the set of homotopy classes of cyclic maps from X

to Y called the Gottlieb subset of [X,Y ]. If X is an H-cogroup then by
[23, Theorem 1.5] the subset G(X,Y ) ⊆ [X,Y ] is a subgroup of [X,Y ]. If
X = Sn, the n-dimensional sphere then G(Sn, Y ) = Gn(Y ) is called the
nth evaluation subgroup of Y or the nth Gottlieb group defined in [8] for
n = 1 and then in [10] for any n ≥ 1. Then, Gn+k(Sn) and Gn+k(FPn)

have been extensively studied in [6] and [7], respectively, where FPn

is the projective space over F being the reals R, complex numbers C,
quaternions H or the Cayley algebra K.

To show the existence of cyclic maps, we recall:

Proposition 3.1 ([23, Lemmas 1.3 and 1.4]). Let f : X → Y be a cyclic
map and g : Z → X an arbitrary map. Then:

(1) fg : Z → Y is a cyclic map;
(2) if a map g : Y → Y ′ has a right homotopy inverse then gf : X →

Y ′ is a cyclic map.

In particular, let X be a co-H-space, f : X → Y and e : ΣΩX → X

the usual map. Then f is cyclic if and only if fe : ΣΩX → Y is cyclic.

Proposition 3.2 ([17, Proposition 3.3]). Let Y be a space. Then the
following are equivalent:

(1) Y is an H-space;
(2) idY is cyclic;
(3) G(X,Y ) = [X,Y ] for any space X.
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Another way in which cyclic maps arise naturally is by fibrations.
Suppose F → E → B is a fibration. Then we have an operation ρ :

F × ΩB → F and the restriction ∂ = ρ|ΩB is cyclic.
Now, we make use of Theorem 2.3 to deduce results being key ones in

sequel.

Corollary 3.3. Let X,Y be spaces. Then:
(1) the map w◦ : ΣΩX ◦ ΣΩY → ΣΩX ∨ ΣΩY coincides with the

generalized Whitehead map w : Σ(ΩX ∧ ΩY )→ ΣΩX ∨ ΣΩY ;
(2) there is the commutative diagram

X ◦ Y w◦ // X ∨ Y

ΣΩX ◦ ΣΩY

e◦e

OO

w◦ // ΣΩX ∨ ΣΩY.

e∨e

OO

Then, the result [18, Proposition 4.6] leads to:

Proposition 3.4. Let X be a co-H-space and f : X → Y a cyclic map.
Then [f, g]◦ = 0 for any map g : Z → Y provided Z is a co-H-space.

Proof. Let f : X → Y be a cyclic map. Then by Proposition 3.1 the
map fe : ΣΩX → Y is cyclic as well. Hence, in view of [18, Proposition
4.6], we get [fe, ge] = 0. Because X and Z are co-H-spaces, Corollary 3.3
leads to [f, g]◦ = 0 and the proof is complete.

Further [5, Proposition 2.3] and Proposition 2.1 yield:

Proposition 3.5. For a map f : X → Y of H-groups, the following are
equivalent:

(1) f∗ maps [Z,X] into the center of [Z, Y ];
(2) ∇(f ∨ idY )i ' ?, where i : X[Y ↪→ X ∨ Y is the inclusion map.

If one of the conditions above is fulfilled, T. Ganea [5] says that f
maps X into the center of Y .

The proof of the result below is a direct consequence of Corollary 3.3
and [14, Corollary 3].
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Theorem 3.6. Let X,Y be co-H-spaces and f : X → Y . Then the
following are equivalent:

(1) f is cyclic;
(2) f maps ΩX into the center of ΩY ;
(3) [f, idY ]◦ = 0.

Theorem 3.6 generalized the result known to spheres: f ∈
G(Sn+k,Sn) = Gn+k(Sn) if and only if the Whitehead product [f, idSn ] = 0

which has been applied in [6] to find Gn+k(Sn) for k ≤ 13. Certainly, the
computations depend on the Whitehead product on spheres.

Now, let i1 : Y1 ↪→ Y1 ∨ Y2 and i2 : Y2 ↪→ Y1 ∨ Y2 be the inclusion
maps. Then, Theorem 3.6 leads to the following generalization of [3,
Proposition 2.3]:

Corollary 3.7. Let X,Y1, Y2 be co-H-spaces and f : X → Y1∨Y2. Then,
f is cyclic if and only if [f, i1]◦ = [f, i2]◦ = 0.

If A is an abelian group and n ≥ 2 then the Moore space M(A,n) is
a co-H-space as a suspension of some space. Because M(A1 ⊕ A2, n) ∼=
M(A1, n)∨M(A2, n) for some abelian groups A1, A2 [3, Proposition 2.3]
has been applied to compute Gn(M(A,n)) provided A is a finitely gener-
ated abelian group. The paper [2] considers the set of homotopy classes
of co-structures on a Moore space M(A,n), where A is an abelian group
and n ≥ 2 is an integer. It is shown that for n > 2 the set has one element
and for n = 2 the set is in one-to-one correspondence with Ext(A,A⊗A).
Further, a detailed investigation of the co-H-structures onM(A, 2) in the
case A = Zm, the integers mod m has been considered. It has been
shown that all co-H-structures on M(Zm, 2) are associative and commu-
tative ifm is odd, and all co-H-structures onM(Zm, 2) are associative and
non-commutative if m is even. Therefore, Corollary 3.7 should be use-
ful to describe G2(M(A, 2)) with respect to all possible co-H-structures
on M(A, 2) provided A is a finitely generated group or more generally,
A =

⊕
i∈I Z⊕

⊕
j∈J Zmj

.

Let Y be an H-group and f : X → Y . Recall that f is called central
if c(idY ×f) ' ?, where c : Y × Y → Y is the basic commutator map. If
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Y is an H-space then, in view of Proposition 2.1, the map Ω : [X,Y ] →
[ΩX,ΩY ] given by f 7→ Ωf is injective. Write [ΩX,ΩY ]CΩ for the subset
of [ΩX,ΩY ] consisting of those homotopy classes of maps Ωf which are
central. Following [18, Definition 4.1], we set C(X,Y ) = Ω−1[ΩX,ΩY ]CΩ.
By [18, Propositions 4.6 and 5.1], it holds:

Proposition 3.8. Let X,Y and Z be spaces.
(1) If f ∈ C(ΣX,Z) then [f, g] = 0 for any g ∈ [ΣY,Z].
(2) C(X,Y ) is a subgroup contained in the center of [X,Y ] if X is a

co-H-space with a right homotopy inverse and Y is any space.

It follows that ifX is a co-H-space with a right homotopy inverse, then
for every space Y , G(X,Y ) ⊆ C(X,Y ) ⊆ center of [X,Y ] as subgroups.
In particular, G(X,Y ) and C(X,Y ) are abelian groups provided X is a
co-H-space. This generalizes Gottlieb’s result from [8] that the Gottlieb
group G1(Y ) lies in the center of the homotopy group π1(Y ).

4 Cocyclic maps and coevaluation groups

According to [23], a map f : X → Y is said to be cocyclic if there is
a map F ′ : X → X ∨ Y such that the diagram

X × Y

X

(idX ×f)∆

99

F ′
// X ∨ Y
?�

OO

is homotopy commutative.
Write DG(X,Y ) for the set of homotopy classes of cocyclic maps from

X to Y called the dual Gottlieb subset of [X,Y ]. If Y is an H-group
then by [23, Theorem 1.5] the subset DG(X,Y ) ⊆ [X,Y ] is a subgroup
of [X,Y ].

Certainly, every map f : X → Y is cocyclic provided X is a co-H-
space.
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Another way in which cocyclic maps arise naturally is by cofibrations
(cf. [19]). Suppose A → B → C is a cofibration. Then we have a
cooperation φ : C → C ∨ ΣA. Then the map s = p2φ : C → ΣA is
cocyclic, where p2 : C ∨ ΣA→ ΣA is the projection map.

Notice that if f : X → Y is a cocyclic map and g : X ′ → X has a
left homotopy inverse then fg : X ′ → Y is also a cocyclic map. Then, in
view of [23, Lemma 7.2], Proposition 3.1 can be dualized as follows:

Proposition 4.1. Let f : X → Y be a cocyclic map. Then:
(1) gf : X → Z is a cocyclic map for an arbitrary map g : Y → Z;
(2) if a map g : X ′ → X has a left homotopy inverse then fg : X ′ → Y

is a cocyclic map.

In particular, let Y be an H-space, f : X → Y and e′ : Y → ΩΣY the
usual map. Then f is cocyclic if and only if e′f : X → ΩΣY is cocyclic.
Further, [19, Proposition 3.2] provides a characterization of a co-H-space
in terms of the cocyclicity of maps.

Proposition 4.2. Let X be a space. Then the following are equivalent:
(1) X is a co-H-space;
(2) idX is cocyclic;
(3) DG(X,Y ) = [X,Y ] for any space Y .

Recall from [1] that given spaces X and Y , there is a dual Whitehead
map w′ : ΩX × ΩY → Ω(X[Y ). This leads to the dual generalized
Whitehead product

[−,−]′ : [Z,ΩX]× [Z,ΩY ]→ [Z,Ω(X[Y )]

for any space Z.
Now, let CO′ be the category of simply connected H-spaces and H-

maps. Following mutatis mutandis the construction presented by B. Gray
in [13] and the cotelescope construction, we get a functor

◦′ : CO′ × CO′ −→ CO′

(called the dual Theriault product) and a natural transformation

w′ : X × Y −→ X ◦′ Y
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which leads to a map

[−,−]◦′ : [Z,X]× [Z, Y ]→ [Z,X ◦′ Y ]

for H-spaces X,Y and any space Z. Many results and proofs of [−,−]◦
can be dualized. We mention only that the products [−,−]′ and [−,−]◦′

coincide provided X,Y are loop spaces. However, many cannot since
[−,−]◦′ is not precise a dual of [−,−]◦. The details and dual version of
Theorem 2.2 and Theorem 2.3 will be published somewhere shortly.

The dual version of Corollary 3.3 and the result [18, Proposition 4.6]
yield:

Proposition 4.3. Let Y be an H-space and f : X → Y a cocyclic map.
Then [f, g]◦′ = 0 for any map g : X → Z provided Z is an H-space.

>From this a dual version of Corollary 3.7 follows:

Corollary 4.4. Let X1, X2, Y be H-spaces and f : X1×X2 → Y . Then,
f is cocyclic if and only if [f, p1]◦′ = [f, p2]◦′ = 0 for the projection maps
p1 : X1 ×X2 → X1 and p2 : X1 ×X2 → X2.

Let A be an abelian group and n ≥ 2. Then the associated
Eilenberg-MacLane space K(A,n) inherits an H-structure. Because
K(A1 × A2, n) ∼= K(A1, n) × K(A2, n) for any abelian groups A1, A2,
Corollary 4.4 should be very useful to compute DG(K(A,n), Y ) provided
that A is an abelian finitely generated group and Y is an H-space.

The dual version of Proposition 3.5 and [5, Proposition 2.3] lead to:

Proposition 4.5. For a map f : X → Y of H-cogroups, the following
are equivalent:

(1) f∗ maps [Y, Z] into the center of [X,Z];
(2) j(idX ×f)∆ ' ?, where j : X × Y → X ∧ Y is the quotient map.

If one of the conditions above is fulfilled, we follow T. Ganea [5] to
say that f maps X into the cocenter of Y . Let X be an H-cogroup and
f : X → Y . Recall that f is called cocentral if (idX ∨f)c ' ?, where
c : X → X ∨X is the basic cocommutator map.
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If X is a co-H-space then the map Σ : [X,Y ] → [ΣX,ΣY ] given by
f 7→ Σf is injective. A subset DC(X,Y ) of [X,Y ] which is the dual of
C(X,Y ) has been studied in [19]. If Y is an H-space then the map Σ :

[X,Y ]→ [ΣX,ΣY ] given by f 7→ Σf is injective. Let [ΣX,ΣY ]CΣ denote
the subset of [ΣX,ΣY ] consisting of those homotopy classes of maps Σf

which are cocentral. Following [19, Definition 4.7], we set DC(X,Y ) =

Σ−1[ΣX,ΣY ]CΣ.
In view of [19, Propositions 4.8 and 5.2], it holds:

Proposition 4.6. Let X,Y and Z be spaces.
(1) If f ∈ DC(Z,ΩX) then [f, g]′ = 0 for any g ∈ [Z,ΩY ];
(2) the set DC(X,Y ) is a subgroup contained in the center of [X,Y ]

if Y is an H-space with a left homotopy inverse and X is any space.

It follows that if Y is an H-space with a right homotopy inverse,
then for every space X there are inclusions DG(X,Y ) ⊆ DC(X,Y ) ⊆
center of [X,Y ] of subgroups. In particular, DG(X,Y ) and DC(X,Y )

are abelian groups provided X is an H-space.
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Derivatives of skew-symmetric and
symmetric vector-valued tensors

Second order elliptic operator of Laplace type on bundles of vector-
valued tensors on a Lie algebroid are introduced and investigated. The
Weitzenböeck type formulas in the case of skew-symmetric and symmetric
tensors are derived.

DERIVATIVES OF SKEW-SYMMETRIC AND SYMMETRIC
VECTOR-VALUED TENSORS

BOGDAN BALCERZAK AND ANTONI PIERZCHALSKI

Abstract. Second order elliptic operator of Laplace type on bundles of vector-valued
tensors on a Lie algebroid are introduced and investigated. The Weitzenböeck type
formulas in the case of skew-symmetric and symmetric tensors are derived.

1. Introduction

A Lie algebroid over a manifold M is a vector bundle A over M with a homomorphism
of vector bundles %A : A ! TM called an anchor, and a real Lie algebra structure
(� (A) ; [[�; �]]) such that [[a; fb]] = f [[a; b]] + %A (a) (f) � b for all a; b 2 � (A), f 2 C1 (M). If
the anchor is constant rank [surjective] we say that the Lie algebroid is regular [transitive].
Any smooth manifoldM de�nes a Lie algebroid, where A = TM with the identity anchor
and the natural Lie algebra of vector �elds on M . Other examples of Lie algebroids
are: Lie algebras, integrable distributions (in particular foliations), cotangent bundles of
Poisson manifolds, Lie algebroids of principal bundles.
For more complete treatment of the category of Lie algebroids and its connections we

refer to: [9], [6], [10], [7], [1].
This article is an extension of our paper [3] where generalized gradients in the sense of

Stein and Weiss on Lie algebroids were introduced and investigated. Stein-Weiss gradi-
ents are irreducible (with respect to the action of the orthogonal group) summands of a
covariant derivative (cf. [14]). The exterior derivative on skew-symmetric forms and its
coderivative, the Ahlfors operator ([13]) and in particular the Cauchy-Riemann operator
are the examples. A connection in a Lie algebroid A has a natural extension to the �rst
order linear operator

r : � (
Vk A�) �! � (A� 


Vk A�):

The last bundle has the following splitting onto three irreducible summands:

� (A� 

Vk A�) = � (

Vk+1A�)� � (
V1;k A�)� � (

Vk�1A�)

(cf. [3]). So, generalized gradients in this case are compositions of r with the projections
de�ned by the splitting. Here, we are going to focus on two gradients: exterior derivative
da and its conjugate da� acting on skew-symmetric tensors and being� up to multiplicative
constants� compositions of r with the projections on the �rst and on the third summand
respectively. In the case of the bundle of symmetric forms an analogous splitting leads
to their symmetric counterparts ds, ds� acting on symmetric tensors. In the both cases a
proper composition, namely

�a = da�da + dada�

Key words and phrases. Lie algebroid, connection, derivative and coderivative operators, Laplace
type operators, Weitzenböck type formulas
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in the �rst case and
�s = ds�ds � dsds�

in the other, lead to important second order di¤erential operators. Both of them are
elliptic and, like the Bochner Laplacian r�r, are of metric symbol (see sections 3 and 4).
As a consequence we derive Weitzenböck type formulas in each case:

� = r�r�R� T �M
(cf. theorems 3 and 8). The formulas describe exact relations of � to the Bochner
Laplacian. The relations depends explicitly on three indicators of the connection: its
curvature (the operator R), its torsion (the operator T ) and non-compatibility of the
connection and the metric (the operatorM). It is important that the two second order
linear elliptic operators di¤er practically by a tensor. In this context deriving its explicit
shape seems to be essential.
In classical di¤erential geometry the formula enables deriving many classical results

establishing the relation between the topological structure of an algebroid and its geom-
etry. By the standard Bochner technique, from the Weitzenböck formula, one can get
then information on existence or nonexistence of some important deformations like iso-
metric, projective, conformal (cf. [15] by K. Yano). One can also get some information
on cohomologies (Betti numbers, [16]) or on lower bounds for spectrum of � (cf. [5]).
Many possible applications of Weitzenböck types formulas can be found in the paper [4]
by J.-P. Bourguignon.
It seems to be interesting that the two quiet antipodal cases: the skew-symmetric and

the symmetric one behave so similar. To stress this harmony we apply exactly the same
arrangement of the material in the both cases. In the case of a general Lie algebroid there
is no equivalent of global (integral) scalar product even if the algebroid bundle carries a
Riemannian structure. The adjoint operators are then de�ned here as the negative traces
of suitable parts of the covariant derivative. They coincide then in the particular case of
the algebroid of the tangent bundle of a compact Riemannian manifold with the operators
adjoint with respect to global (integral) scalar product. In contrast to [3] we consider here
the tensors (forms) with values in a given vector bundle. This bundle needs not to have
any additional structure like algebraic or metric. It is equipped with a connection only.

2. The exterior covariant derivative for an arbitrary connection

Let (A; %A; [[�; �]]) be a Lie algebroid over a manifold M and let E be a vector bundle
over M . Let A (A;E) =

L
p�0 A k (A;E), where A k (A;E) = � (

Vk A� 
 E), be the
C1 (M)-module of skew-symmetric forms on the Lie algebroid A of values in the vector
bundle E. A (A;E) is the module over the ring C1 (M) and the module over the algebra
A (A) = A (A;M � R) with the multiplication de�ned in the following way:

^ : A p (A;M � R)�A q (A;E) �! A p+q (A;E) ;

(! ^ �) (a1; : : : ; ap+q) =
P

�2S(p;q)
sgn� � !

�
a�(1); : : : ; a�(p)

�
� �
�
a�(p+1); : : : ; a�(p+q)

�
;

where S (p; q) is the set of (p; q)-shu­ es.
Let

r : A �! A (E)
be an A-connection in E, i.e. a homomorphism of vector bundles A and A (E), which
commutes with anchors, and where A (E) is the Lie algebroid of E. We recall (cf. [9])
that the module CDO (E) of sections of A (E) is the space of all covariant di¤erential
operators in E, i.e. R-linear operators ` : � (E) ! � (E) such that there is X` 2 X (M)
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satisfying ` (fe) = f` (e) + X` (f) e for all f 2 C1 (M) and e 2 � (E). r de�nes a
C1 (M)-linear operator

r : � (A) �! CDO (E)
of modules of sections which will be denoted also by r and also called an A-connection.
One can observe that

Sec %A(E) � r = Sec %A;
where Sec %A(E) and Sec %A are morphisms of C1 (M)-modules determined by the anchor
%A(E) in the Lie algebroid A (E) and %A, respectively. The 2-form Rr 2 A 2 (A;End(E))
de�ned by

Rr (a; b) = ra � rb �rb � ra �r[[a;b]]

is called the curvature of the A-connection r. We say that r is �at if Rr = 0.
Recall that the exterior derivative dr : A k (A;E) ! A k+1 (A;E) determined by r is

de�ned by�
dr�

�
(a1; : : : ; ak+1) =

k+1P
j=1

(�1)j�1raj (� (a1; : : :baj : : : ; ak+1))(2.1)

+
P
i<j

(�1)i+j � ([[ai; aj]]; a1; : : :bai : : :baj : : : ; ak+1) :
dr is a �rst order di¤erential operator giving a cohomology space ifr is �at. In particular,
if r is the anchor considered as an A-connection in the vector bundle M � R, dr = d%A
gives the cohomology of the Lie algebroid A (cf. [11]).
Let rA be an A-connection in A. By a torsion of rA we mean the 2-form TA 2

A 2 (A;A) given by

TA (a; b) = rA
a b�rA

b a� [[a; b]]; a; b 2 � (A) :

Denote the vector bundle
Ok

A� by A�
k and
O

A� =
M

k�0
A�
k by A�
. r and rA

induce an A-connection
r : � (A) �! CDO

�
A�
 
 E

�
in the vector bundle A�
 
 E by

(ra�) (a1; : : : ; ap) = ra (� (a1; : : : ; ap))�
pP
j=1

�
�
a1; : : : ;rA

a aj; : : : ; ap
�
;

a; a1; : : : ; ap 2 � (A), � 2 � (A�
p 
 E).
The connection r determines the di¤erential operator

r : �
�
A�
p 
 E

�
�! �

�
A�
p+1 
 E

�
given by

(2.2) (r�) (a0; a1; : : : ; ak) = (ra0�) (a1; : : : ; ak)

for � 2 � (A�
p 
 E), aj 2 � (A).
Let a 2 � (A). The substitution operator

ia : �
�
A�
 
 E

�
�! �

�
A�
 
 E

�
on � (A�
 
 E) is de�ned by

(ia�) (a1; : : : ; ap�1) = � (a; a1; : : : ; ap�1)

for all � 2 � (A�
p 
 E), a1; : : : ; ap�1 2 � (A).
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De�ne the second covariant derivative

r2 = r �r : �
�
A�
p 
 E

�
�! �

�
A�
p+2 
 E

�
and for any a; b 2 � (A) the operator r2

a;b such that

r2
a;b = iaibr2;

i.e. r2
a;b is a operator of the zero degree given explicitly by

(2.3) r2
a;b� = ra (rb�)�rrAa b�

for � 2 � (A�
 
 E).

Lemma 1.
raib = ibra + irAa b

for any a; b 2 � (A).

Proof. Let � 2 � (A�
p 
 E), a1; : : : ; ap 2 � (A). Then

(raib� � ibra�) (a1; : : : ; ap)

= (ra (ib�)) (a1; : : : ; ap)� (ra�) (b; a1; : : : ; ap)

= (ra (� (b; a1; : : : ; ap)))�
pP
s=1

�
�
b; a1; : : : ;rA

a as; : : : ; ap
�

� (ra (� (b; a1; : : : ; ap))) + �
�
rA
a b; a1; : : : ; ap

�
+

pP
s=1

�
�
b; a1; : : : ;rA

a as; : : : ; ap
�

=
�
irAa b�

�
(a1; : : : ; ap) :

�

Lemma 2.
Rr
a;b� = r2

a;b� �r2
b;a� +rTA(a;b)�

for � 2 � (A�
 
 E), a; b 2 � (A).

Proof. Use Lemma 1 to obtain:

r2
a;b� �r2

b;a� = ib (ra (r�))� ia (rb (r�))

=
�
raib � irAa b

�
(r�)�

�
rbia � irAb a

�
(r�)

= ra (rb�)�rrAa b� �rb (ra�) +rrAb a�

= ra (rb�)�rb (ra�)�r[[a;b]]� �rrAa b�rAb a�[[a;b]]�

=
�
Rr
a;b �rTA(a;b)

�
�:

�

The curvature of r : � (A) �! CDO (A�
 
 E) depends explicitly on curvatures of
the connections r : � (A) �! CDO (E) and rA : � (A) �! CDO (A).

Lemma 3. If � 2 �
�
A�
k 
 E

�
, a; b; a1; : : : ; ak 2 � (A), then�

Rr

a;b�
�
(a1; : : : ; ak) = Rr

a;b (� (a1; : : : ; ak))�
kP
s=1

�
�
a1; : : : ;RrA

a;b as; : : : ak

�
:
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Proof. Let � 2 �
�
A�
k 
 E

�
, a; b; a1; : : : ; ak 2 � (A). Then�

Rr

a;b�
�
(a1; : : : ; ak)

= ra (rb (� (a1; : : : ; ak)))�
kP
s=1

ra

�
�
�
a1; : : : ;rA

b as; : : : ; ak
��

�
kP
s=1

rb

�
�
�
a1; : : : ;rA

a as; : : : ; ak
��
+

kP
s=1

�
�
a1; : : : ;rA

b

�
rA
a as
�
; : : : ; ak

�
+

kP
s=1

P
t6=s
�
�
a1; : : : ;rA

b at; : : : ;rA
a as : : : ; ak

�
+

kP
s=1

ra

�
�
�
a1; : : : ;rA

b as; : : : ; ak
��

�
kP
s=1

P
t6=s
�
�
a1; : : : ;rA

b at; : : : ;rA
a as : : : ; ak

�
�

kP
s=1

�
�
a1; : : : ;rA

a

�
rA
b as
�
; : : : ; ak

�
�r[[a;b]] (� (a1; : : : ; ak)) +

kP
s=1

�
�
a1; : : : ;rA

[[a;b]]as; : : : ; ak
�
:

Now, by collecting similar terms we obtain that�
Rr
a;b�
�
(a1; : : : ; ak)

= ra ((rb�) (a1; : : : ; ak))�rb ((ra�) (a1; : : : ; ak))�r[[a;b]] (� (a1; : : : ; ak))

�
kP
s=1

�
�
a1; : : : ;rA

a

�
rA
b as
�
�rA

b

�
rA
a as
�
�rA

[[a;b]]as; : : : ak
�

= Rr
a;b (� (a1; : : : ; ak))�

kP
s=1

�
�
a1; : : : ;RrA

a;b as; : : : ; ak

�
:

�

De�ne the A-connection

r : � (A) �! CDO (
V
A� 
 E)

in the vector bundle
V
A� 
 E by

(ra�) (a1; : : : ; ap) = ra (� (a1; : : : ; ap))�
pP
j=1

�
�
a1; : : : ;rA

a aj; : : : ; ap
�
;

a; a1; : : : ; ap 2 � (A), � 2 A p (A;E). Observe that for all � 2 A (A;E), f 2 C1 (M) =
A 0 (A;E), a 2 � (A) we have

(2.4) ra (f � �) = f � ra� + (%A)a (f) � �;

where %A : � (A) �! CDO (
V
A� 
 (M � R)) is the A-connection in the bundle

V
A� 


(M � R) determined by the pair of connections %A and rA. So, we see that indeed, for
every a 2 � (A), the operator ra has values in CDO (

V
A� 
 E).

Lemma 4. If ! 2 A (A;M � R), � 2 � (E), a 2 � (A), then

(2.5) ra (! 
 �) = (%A)a (!)
 � + ! 
ra�:
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Proof. Let � 2 � (E), a 2 � (A). If ! 2 A 0 (A) = C1 (M), (2.5) is equivalent to (2.4).
Now, let ! 2 A p (A), a1; : : : ; ap 2 � (A). Then:

ra (! 
 �) (a1; : : : ; ap)

= ra ((! 
 �) (a1; : : : ; ap))�
pP
j=1

(! 
 �)
�
a1; : : : ;rA

a aj; : : : ; ap
�

= ra (! (a1; : : : ; ap) � �)�
pP
j=1

!
�
a1; : : : ;rA

a aj; : : : ; ap
�
� �

= %A (a) (! (a1; : : : ; ap)) � � �
pP
j=1

!
�
a1; : : : ;rA

a aj; : : : ; ap
�
� � + ! (a1; : : : ; ap) � ra (�)

= ((%A)a (!)
 � + ! 
ra�) (a1; : : : ; ap) :

�
Lemma 5. If ! 2 A (A), � 2 A (A;E), a 2 � (A):

ra (! ^ �) = (%A)a (!) ^ � + ! ^ra�:

Proof. Let ! 2 A p (A), � 2 A q (A;E), a 2 � (A). Let � be a form �0 
 � for some
�0 2 A q (A) and � 2 � (E). Lemma 4 implies that

ra (! ^ �) = ra (! ^ �0 
 �)
= (%A)a (! ^ �0)
 � + (! ^ �0)
ra�:

Since (%A)a is a di¤erentiation in the algebra A (A), from Lemma 4 we obtain:

ra (! ^ �) = ((%A)a (!) ^ �0 + ! ^ (%A)a (�0))
 � + (! ^ �0)
ra�

= (%A)a (!) ^ (�0 
 �) + ! ^ ((%A)a (�0)
 � + �0 
ra�)

= (%A)a (!) ^ � + ! ^ra (�) :

�
Now, de�ne the operator da : A k (A;E) �! A k+1 (A;E) by

(2.6) da� = (k + 1) � Alt (r�) ;

where for any � 2
Op

A� its alternation Alt � is de�ned by

Alt � = 1
p!

P
�2Sp

sgn� (��) :

So,

(2.7) (da�) (a1; : : : ; ak+1) =
k+1P
j=1

(�1)j�1
�
raj�

�
(a1; : : :baj : : : ; ak+1) ;

where � 2 A k (A;E), a1; : : : ; ak+1 2 � (A). A relation between d and da describes the
following

Lemma 6.
da = dr + dT

where dT : A p (A;E) �! A p+1 (A;E) is the operator given by�
dT�
�
(a1; : : : ; ap+1) =

P
i<j

(�1)i+j �
�
TA (ai; aj) ; a1; : : :bai : : :baj : : : ; ap+1�

for any � 2 A p (A;E), a1; : : : ; ap+1 2 � (A).
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Proof. Let � 2 A k (A;E), a1; : : : ; ap+1 2 � (A). Therefore

(Alt (r�)) (a1; : : : ; ap+1)

=
p+1P
j=1

(�1)j�1
�
raj�

�
(a1; : : :baj : : : ; ap+1)

=
p+1P
j=1

(�1)j�1raj (� (a1; : : :baj : : : ; ap+1))�P
i<j

(�1)j�1 �
�
a1; : : : ;rA

aj
ai; : : :baj : : : ; ap+1�

�
P
j<i

(�1)j�1 �
�
a1; : : :baj : : : ;rA

aj
ai; : : : ; ap+1

�
=

p+1P
j=1

(�1)j�1raj (� (a1; : : :baj : : : ; ap+1))
+
P
i<j

(�1)i+j �
�
rA
ai
aj �rA

aj
ai; a1; : : :bai : : :baj : : : ; ap+1�

=
p+1P
j=1

(�1)j�1raj (� (a1; : : :baj : : : ; ap+1))
+
P
i<j

(�1)i+j �
�
[[ai; aj]] + T

A (ai; aj) ; a1; : : :bai : : :baj : : : ; ap+1�
=

�
dr�

�
(a1; : : : ; ap+1) +

�
dT�
�
(a1; : : : ; ap+1) :

�

Notice that if rA is torsion-free, da = dr (cf. also [2]).

3. Weitzenböck Formula for Skew-symmetric Forms

Assume that in the vector bundle A we have a Riemannian metric g. For any k > 1
and any � 2 � (A�
k
E) de�ne the trace tr � 2 � (A�
k�2
E) as the trace with respect
to the �rst two arguments by

(3.1) (tr �) (a1; : : : ; ak�2) =
nP
j=1

� (ej; ej; a1; : : : ; ak�2)

where (e1; : : : ; en) is a local orthonormal frame of A (n = dimAx, x 2 M). De�ne
additionally tr � = 0 for � 2 � (A�
1). One can see that tr do not depend on the choice
of the frame.
By the exterior coderivative da� we mean the operator:

(3.2) da� = � tr �r : A k (A;E) �! A k�1 (A;E) :

Remark 1. In the case of invariantly oriented Lie algebroids we can use the integral �bre
operator and a scalar product on the module A (A) such that da� is formally adjoint to
da = d%A with respect to this product, see [8]. For a general Lie algebroid we do not have
such a scalar product.

De�ne three di¤erential operators of order zero. The �rst, a Ricci type operator Ra :
A (A;E)! A (A;E) de�ned by

(3.3) (Ra�) (a1; : : : ; ak) =
nP
j=1

kP
s=1

(�1)s�1
�
Rr
ej ;as

�
�
(ej; a1; : : :bas : : : ; ak) ;
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the operator T a : A (A;E)! A (A;E) by

(3.4) (T a�) (a1; : : : ; ak) =
nP
j=1

kP
s=1

(�1)s�1
�
rTA(ej ;as)�

�
(a1; : : :bas : : : ; ak) ;

and next, the operatorMa : A (A;E) �! A (A;E) by

(3.5) (Ma�) (a1; : : : ; ak) =
nP
j=1

kP
s=1

(�1)s�1
�
irAasej iej + iej irAasej

�
(r�) (a1; : : :bas : : : ; ak) ;

where � 2 A k (A;E), a1; : : : ; ak 2 � (A), (e1; : : : ; en) is a local orthonormal frame of A,
Rr is the curvature tensor of the connection r. The �rst one Ra is the trace of the
curvature tensor. The next T a indicates a deviation of the connection from being torsion-
free. The thirdMa measures a non-compatibility of r with the metric. By Lemma 2,

(Ra� � T a�) (a1; : : : ; ak)(3.6)

=
nP
j=1

kP
s=1

(�1)s�1
�
r2
ej ;as

� �r2
as;ej

�
�
(ej; a1; : : :bas : : : ; ak) :

Moreover observe that the operators Ra, T a�,Ma� can be written in the following forms

(Ra�) = Alt

 
nP
j=1

iej

�
Rr
ej ;��

�!
;

T a� = �Alt
 

nP
j=1

rTrA (ej ;�)�

!
;

Ma� = �Alt
 

nP
j=1

�
irAej iej + iej irAej

�!
(r�) :

De�ne the Laplace operator on di¤erential forms on the Lie algebroid A by

�a = da�da + dada�:

Recall that for a linear operator P : � (F )! � (F ) of order m in a vector bundle F its
symbol at a given point x 2M is de�ned by

�P (e; !) = P (f
m�) (x)

for e 2 Fx and such ! 2 A�x that ! = (df) (x) for some smooth function f with f (x) = 0,
and where � 2 � (F ), � (x) = e (cf. [12]). The de�nition is independent either of f nor of
�.
Observe that if A is transitive, �a is a second order strongly elliptic operator with the

metric symbol
��a (!; �) = j!j2 �:

Indeed, let x 2M , ! 2 A�x, e 2 �kA�x
Ex and let f 2 C1 (M), s 2 �
�
�kA� 
 E

�
satisfy

f (x) = 0, (df) (x) = !, s (x) = e. Then

�da (!; e) = d
a (fs) (x) = (daf ^ s+ fdas) (x) = ! ^ e:

Moreover, since (%A) (f) = d
af , the relation (2.4) implies

�da� (!; e) = d
a� (fs) (x) =

�
i(df)]s

�
(x) = i!]e

where ] : A� ! A is the musical isomorphism determined by the metric g, i.e. for an
1-form � 2 A k (A;M � R)

g
�
�]; b

�
= ib� for b 2 � (A):
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Hence

�da�da (!; e) = i!] (! ^ e) = i!]! ^ e� ! ^ i!]e

and

�dada� (!; e) = ! ^ i!]e:

Consequently,

��a (!; e) = �da�da+dada� (!; e) = i!]! ^ e = g
�
!]; !]

�
e:

Now we write the explicit formulas for the two terms of � in the case of an arbitrary
Lie algebroid A.

Theorem 1.

da�da� = � tracer2� +
nP
j=1

Alt
�
iej

�
r2
ej ;(�)�

��

for � 2 A (A;E).

Proof. Let � 2 A k (A;E), a1; : : : ; ak 2 � (A) and (e1; : : : ; en) be a local orthonormal
frame of A. By (2.7) and the de�nition of da� we obtain that

(da�da�) (a1; : : : ; ak)

= �
nP
j=1

�
rej (d

a�) (ej; a1; : : : ; ak)
�
+

nP
j=1

(da�)
�
rA
ej
ej; a1; : : : ; ak

�
+

nP
j=1

kP
s=1

(da�)
�
ej; a1; : : : ;rA

ej
as; : : : ; ak

�
= �

nP
j=1

rej

��
rej�

�
(a1; : : : ; ak)

�
�

nP
j=1

kP
s=1

(�1)srej ((ras�) (ej; a1; : : :bas : : : ; ak))
+

nP
j=1

�
rrAej ej

�
�
(a1; : : : ; ak) +

nP
j=1

kP
s=1

(�1)s (ras�)
�
rA
ej
ej; a1; : : :bas : : : ; ak�

+
nP
j=1

kP
s=1

�
rej�

� �
a1; : : : ;rA

ej
as; : : : ; ak

�
+

nP
j=1

kP
s=1

(�1)s�1
�
rrAej

�
�
(ej; a1; : : :bas : : : ; ak)

+
nP
j=1

kP
s=1

P
s 6=t
(�1)t (rat�)

�
ej; a1; : : :bat : : : ;rA

ej
as; : : : ; ak

�
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= �
nP
j=1

�
rej

�
rej�

��
(a1; : : : ; ak)�

nP
j=1

kP
s=1

�
rej�

� �
a1; : : : ;rA

ej
as; : : : ; ak

�
�

nP
j=1

kP
s=1

(�1)s
�
rej (ras�)

�
(ej; a1; : : :bas : : : ; ak)

�
nP
j=1

kP
s=1

(�1)s (ras�)
�
rA
ej
ej; a1; : : :bas : : : ; ak�

�
nP
j=1

kP
s=1

P
s 6=t
(�1)s (ras�)

�
ej; a1; : : :bas : : : ;rA

ej
as; : : : ; ak

�
+

nP
j=1

�
rrAej ej

�
�
(a1; : : : ; ak) +

nP
j=1

kP
s=1

(�1)s (ras�)
�
rA
ej
ej; a1; : : :bas : : : ; ak�

+
nP
j=1

kP
s=1

�
rej�

� �
a1; : : : ;rA

ej
as; : : : ; ak

�
+

nP
j=1

kP
s=1

(�1)s�1
�
rrAej

�
�
(ej; a1; : : :bas : : : ; ak)

+
nP
j=1

kP
s=1

P
s 6=t
(�1)t (rat�)

�
ej; a1; : : :bas : : : ;rA

ej
as; : : : ; ak

�
After collecting similar summands and using (2.3) one obtains

(da�da�) (a1; : : : ; ak)

= �
nP
j=1

�
rej

�
rej�

�
�rrAej ej

�
�
(a1; : : : ; ak)

�
nP
j=1

kP
s=1

(�1)s
�
rej (ras�)

�
(ej; a1; : : :bas : : : ; ak)

+
nP
j=1

kP
s=1

(�1)s�1
�
rrAej

�
�
(ej; a1; : : :bas : : : ; ak)

= � tracer2� (a1; : : : ; ak) +
nP
j=1

kP
s=1

(�1)s�1
�
r2
ej ;as

�
�
(ej; a1; : : :bas : : : ; ak) :

Moreover observe that

nP
j=1

kP
s=1

(�1)s�1
�
r2
ej ;as

�
�
(ej; a1; : : :bas : : : ; ak)

=
nP
j=1

kP
s=1

(�1)s�1
�
ias
�
iejr (r�)

��
(ej; a1; : : :bas : : : ; ak)

=
kP
s=1

(�1)s�1
 

nP
j=1

iej ias
�
iejr (r�)

�!
(a1; : : :bas : : : ; ak)

= Alt

 
nP
j=1

iej

�
r2
ej ;(�)�

�!
(a1; : : : ; ak) :

�
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Theorem 2.

(dada��) (a1; : : : ; ak)

= �
nP
j=1

kP
s=1

(�1)s�1
�
r2
as;ej

�
�
(ej; a1; : : :bas : : : ; ak)

�
nP
j=1

kP
s=1

(�1)s�1
�
irAasej iej + iej irAasej

�
(r�) (a1; : : :bas : : : ; ak) ;

i.e.

dada�� = �
nP
j=1

Alt
�
iej

�
r2
(�);ej�

��
�

nP
j=1

Alt
�
irAej iej + iej irAej

�
(r�)

for � 2 A (A;E), a1; : : : ; ak 2 � (A).

Proof. Let � 2 A k (A;E), a1; : : : ; ak 2 � (A) and (e1; : : : ; en) be a local orthonormal
frame of A. By (2.7) and the de�nition of da� we have

(dada��) (a1; : : : ; ak)

=
kP
s=1

(�1)s�1 (ras (d
��)) (a1; : : :bas : : : ; ak)

= �
kP
s=1

nP
j=1

(�1)s�1
�
ras

�
iej
�
rej�

���
(a1; : : :bas : : : ; ak)

= �
kP
s=1

nP
j=1

(�1)s�1ras

��
rej�

�
(ej; a1; : : :bas : : : ; ak)�

+
nP
j=1

kP
s=1

P
t6=s
(�1)s�1

�
rej�

� �
ej; a1; : : : ;rA

asat; : : :bas : : : ; ak�
= �

kP
s=1

nP
j=1

(�1)s�1
�
ras

�
rej�

��
(ej; a1; : : :bas : : : ; ak)

�
kP
s=1

nP
j=1

(�1)s�1
�
rej�

� �
rA
asej; a1; : : :bas : : : ; ak�

�
kP
s=1

nP
j=1

P
t6=s
(�1)s�1

�
rej�

� �
ej; a1; : : : ;rA

asat; : : :bas : : : ; ak�
+

nP
j=1

kP
s=1

P
t6=s
(�1)s�1

�
rej�

� �
ej; a1; : : : ;rA

asat; : : :bas : : : ; ak� :
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Now, collecting similar terms one concludes that

(dada��) (a1; : : : ; ak)

= �
kP
s=1

nP
j=1

(�1)s�1
�
ras

�
rej�

��
(ej; a1; : : :bas : : : ; ak)

�
kP
s=1

nP
j=1

(�1)s�1
�
rej�

� �
rA
asej; a1; : : :bas : : : ; ak�

= �
kP
s=1

nP
j=1

(�1)s�1
�
r2
as;ej

�
�
(ej; a1; : : :bas : : : ; ak)

�
kP
s=1

nP
j=1

(�1)s�1
�
rrAasej

�
�
(ej; a1; : : :bas : : : ; ak)

�
kP
s=1

nP
j=1

(�1)s�1
�
rej�

� �
rA
asej; a1; : : :bas : : : ; ak�

= �
kP
s=1

nP
j=1

(�1)s�1
�
r2
as;ej

�
�
(ej; a1; : : :bas : : : ; ak)

�
kP
s=1

nP
j=1

(�1)s�1
�
iej irAasej

+ i
rAasej

iej

�
(r�) (a1; : : :bas : : : ; ak) :

�

As a consequence of theorems 1 and 2 we have the following

Theorem 3. (Weitzenböck Formula for Skew-Symmetric Forms)

(3.7) �a = r�r+Ra � T a �Ma

where Ra, T a andMa are the operators de�ned in (3.3)� (3.5).

Observe that if there exists a local orthonormal frame of sections (e1; : : : ; en) with the
property rA

ei
ej
��
x
= 0 at a single point x 2M , thenMa is equal to zero. This condition is

ful�lled in case A = F � TM is an integrable distribution onM andrA is the Levi-Civita
connection. The assumption of existence of a local orthonormal frame of sections that
have vanishing covariant derivatives at a single point implies that the isotropy algebra of
A (i.e. ker %Ajx) is abelian, and then T a = 0.

4. da� and �a in the case of a metric connection

Consider some particular cases. Assume that rA is metric (is compatible with g), i.e.

(%A � a) (g (b; c)) = g (rab; c) + g (b;rac) for all a; b; c 2 � (A) :

We see at once that then the operator Ma vanishes. Consequently, the Weitzenböck
Formula reduces to the form

�a = r�r+Ra � T a:

If r is a torsion-free A-connection on A, then da = dr is the exterior derivative on A
given in (2.1) and T a = 0. In particular, if rA : � (A) �! CDO (A) is the Levi-Civita
connection in A, i.e.
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2g
�
rA
a b; c

�
= (%A � a) (g (b; c)) + (%A � b) (g (a; c))� (%A � c) (g (a; b))

+g ([[a; b]]; c) + g ([[c; b]]; a) + g ([[c; a]]; b)

for any a; b; c 2 � (A) (thenrA is uniquely determined metric and torsion-free connection),
the Laplacian reduces to its classical shape:

�a = r�r+Ra:

If rA is metric, the coderivative d�a we can expressed in the language of the Hodge
stat operator.
Assume that A is oriented and let 
 2 A n (A;M � R) be the volume form (n = dimAx,

x 2M).
For any a 2 � (A) we will denote by a� the 1-form dual to a with respect to g, i.e.

a� = g (a; �). We extend g to the scalar product h�; �ig on A k (A;M � R) in the usual way
putting

ha�1 ^ : : : ^ a�k; b�1 ^ : : : b�kig = det
�

a�i ; b

�
j

�
g

�
;

a1; : : : ; ak; b1; : : : ; bk 2 � (A).
De�nition 1. Let (e1; : : : ; en) be a local oriented orthonormal frame for A and (e�1; : : : ; e�n)
� the dual local orthonormal frame for A�. Let I = (i1; : : : ; ip) and J = (j1; : : : ; jn�p),
where i1 < : : : < ip, j1 < : : : < jn�p, be a complementary set such that (I; J) is a
permutation of f1; : : : ; ng. Let

!I = e
�i1 ^ : : : ^ e�ip ; !J = e

�j1 ^ : : : ^ e�jn�p ; � 2 � (E) :
De�ne a C1 (M)-linear operator

� : A p (A;E) �! A n�p (A;E)

by
� (!I 
 �) = � (I; J)!J 
 �;

where � (I; J) is the sign of the permutation (I; J) = (i1; : : : ; ip; j1; : : : ; jn�p).

One can check that



 (��) (a1; :::; an�p) = (�1)p(n�p) a�1 ^ ::: ^ a�n�p ^ �;
for any a1; :::; an�p 2 � (A), � 2 A p (A;E).
Consequently, by properties of the star operator on scalar forms (cf. [2]) we obtain

Lemma 7. For any � 2 � (E), f 2 C1 (M), � 2 A p (A;E), a; a1; :::; an�p+1 2 � (A) the
following equalities are ful�lled:
(a) � (

 �) = �, � (f

 �) = f�, � (�) = 

 �,
(b) (��) (a1; :::; an�p) = (�1)p(n�p) �

�
a�1 ^ ::: ^ a�n�p ^ �

�
;

(c) ia (��) = (�1)p � (a� ^ �),
(d) � � � = (�1)p(n�p) �.
Now we are going to show that � and a metric connection r commute.

Theorem 4. If rA is a metric connection,

(4.1) � (ra�) = ra (��)
for all � 2 A (A;E), a 2 � (A) :
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Proof. Let a 2 � (A), ! 2 A p (A;M � R), � 2 E. From Theorem 3.2 [2] we have

(%A)a (�!) = � ((%A)a !) :

Therefore, by (2.5) we obtain

ra (� (! 
 �)) = ra (�! 
 �)
= (%A)a (�!)
 � + (�!)
ra�

= � ((%A)a !)
 � + (�!)
ra�

= � ((%A)a ! 
 � + ! 
ra�)

= � (ra (! 
 �)) :

�

Lemma 8. If (e1; : : : ; en) is a local frame of A and (e�1; : : : ; e
�
n) is the dual local frame of

A�, then

da� =
nP
s=1

e�s ^ (res�)

for � 2 A (A;E).

Proof. Let � 2 A k (A;E), a1; : : : ; ak+1 2 � (A). Then

(da�) (a1; : : : ; ak+1) =
k+1P
j=1

(�1)j�1
�
raj�

�
(a1; : : :baj : : : ; ak+1)

=
P

�2S(1;p)
sgn�

�
ra�(1)�

� �
a�(2); : : : ; a�(k+1)

�
=

P
�2S(1;p)

sgn�
�
rPn

s=1
g(es;a�(1))es

�
� �
a�(2); : : : ; a�(k+1)

�
=

nP
s=1

P
�2S(1;p)

sgn� e�s
�
a�(1)

�
(res�)

�
a�(2); : : : ; a�(k+1)

�
=

�
nP
s=1

e�s ^res (�)

�
(a1; : : : ; ak+1) :

�

As a conclusion from lemmas 8, 7 (e) and 7 (c) we obtain the following expression of
the exterior coderivative.

Theorem 5. If rA is a metric connection,

(4.2) da�� = (�1)n(p+1)+1 � da � �

for � 2 A p (A;E).

As a conclusion we obtain

Corollary 1. If rA is metric, then da (! ^ ��) = (d%A!) ^ �� + (�1)m+p ! ^ (�da��) for
! 2 A m (A), � 2 A p (A;E).
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Proof. Observe

! ^ (�d�a�) = (�1)n(p+1)+1 ! ^ (� � da � �)

= (�1)n(p+1)+1 ! ^
�
(�1)(n�p+1)(n�(n�p+1)) da (��)

�
= (�1)n(p+1)+1 (�1)(n�p+1)(p�1) ! ^ (da (��))
= (�1)np+n+1+np�n+p(�p+1)+p�1 ! ^ (da (��))
= (�1)p ! ^ (da (��)) :

Hence

da (! ^ ��) = (d%A!) ^ �� + (�1)m ! ^ da (��)
= (d%A!) ^ �� + (�1)m+p ! ^ (�da��) :

�

5. Weitzenböck Formula for Symmetric Forms

Let S k (A;E) be the C1 (M)-module of all symmetric di¤erential forms of values in
the vector bundle E, i.e. the module of sections of SkA�
E � A�
k
E and S (A;E) =L
k�0

S k (A;E).

De�ne the A-connection

r : � (A) �! CDO (SA� 
 E)
in the vector bundle SA� 
 E by

(5.1) (ra�) (a1; : : : ; ap) = ra (� (a1; : : : ; ap))�
pP
j=1

�
�
a1; : : : ;rA

a aj; : : : ; ap
�
;

a; a1; : : : ; ap 2 � (A), � 2 S p (A;E). Observe that� like in the skew-symmetric case� we
have

(5.2) ra (f � �) = f � ra� + (%A)a (f) � �
for all � 2 S (A;E), f 2 C1 (M) = S 0 (A;E), a 2 � (A), where (%A) denote here the
A-connection in SA� 
 (M � R) determined by the pair of connections %A and rA. So,
indeed the operator ra has values in CDO (SA� 
 E) for every a 2 � (A). Moreover, if
� 2 S (A;M � R), � 2 � (E), a 2 � (A), then
(5.3) ra (�
 �) = ((%A)a �)
 � + �
ra�:

The C1 (M)-module S (A;E) is equipped with the structure of the module over the
algebra S (A;M � R) with the multiplication

� : S p (A;M � R)�S q (A;E) �! S p+q (A;E)

de�ned by

(�� �) (a1; : : : ; ap+q) =
P

�2S(p;q)
�
�
a�(1); : : : ; a�(p)

�
� �
�
a�(p+1); : : : ; a�(p+q)

�
:

Observe that if � 2 S (A;M � R), � 2 S (A;E), a 2 � (A):
ra (�� �) = ((%A)a �)� � + �� (ra�) :

De�ne the symmetric derivative ds : S k �! S k+1 by

(5.4) (ds�) (a1; : : : ; ak+1) =
k+1P
j=1

�
raj�

�
(a1; : : :baj : : : ; ak+1)



50 Derivatives of skew-symmetric and symmetric vector-valued tensors

16 B. BALCERZAK AND A. PIERZCHALSKI

for � 2 S k, a1; : : : ; ak+1 2 � (A).
One can observe that

(5.5) ds = (k + 1) � (Sym �r) on S k (A;E)

where Sym is the symmetrizer given by

(Sym#) (a1; : : : ; ak) =
1

k!

P
�2Sk

#
�
a�(1); : : : ; a�(k)

�
for all # 2 �

�
A�
k 
 E

�
:

By the symmetric coderivative ds� we mean the operator

(5.6) ds� = � tr � rjS k(A;E) : S
k (A;E) �! S k�1 (A;E)

where r : �
�
A�
k 
 E

�
�! �

�
A�
k+1 
 E

�
is de�ned in (2.2), i.e. explicitly

(ds��) (a1; : : : ; ak�2) =
nP
j=1

� (ej; ej; a1; : : : ; ak�2)

for � 2 S k (A;E), a1; : : : ; ak�2 2 � (A).
De�ne the Laplace-type operator on symmetric tensors by

�s = ds�ds � dsds�:

Example 1. Consider the Lie algebroid A = TRn and the trivial bundle E = M � R.
Take

! =
X
j�j=k

!�dx
�1
1 � dx�22 � � � � � dx�nn 2 S k (A;M � R)

where � = (�1; �2; : : : ; �n), j�j = �1 + �2 + � � �+ �n, !� 2 C1 (M). Observe that

r! =
nX
j=1

X
j�j=k

@!�
@xj

dxj 
 dx�11 � dx�22 � � � � � dx�nn :

and

ds! =

nX
j=1

X
j�j=k

@!�
@xj

dxj � dx�11 � dx�22 � � � � � dx�nn

=

nX
j=1

X
j�j=k

@!�
@xj

dx�11 � dx�22 � � � � � dx�j+1j � � � � � dx�nn

So,

ds�! = � trr!

=

nX
s=1

ies

0@ nX
j=1

X
j�j=k

@!�
@xj

�sj 
 dx�11 � � � � � �sdx�s�1s � � � � � dx�nn

1A
=

nX
j=1

X
j�j=k

@!�
@xj

�jdx
�1
1 � � � � � dx�j�1j � � � � � dx�nn :
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Consequently,

�s! = ds�ds! � dsds�!

= �
X
j�j=k

@2!�
@x2j

dx�11 � dx�22 � � � � � dx�nn

= �
X
j�j=k

(�s!�) dx
�1
1 � dx�22 � � � � � dx�nn

where �s!� = �
a!� is the classical Laplacian on the smooth function !�.

Notice that if A is transitive, �s is a second order strongly elliptic operator with the
metric symbol

��s (!; �) = j!j2 �; ! 2 S k (A;M � R) ; � 2 S k (A;E) :

Indeed, take x 2M , e 2 SkA�x
Ex, � 2 S k (A;E) and ! 2 A�x such that ! = (df) (x) for
some smooth function f satisfying f (x) = 0 and � (x) = e. Since (%A) (f) = d

sf = daf ,
the relation (5.2) implies that

�ds (!; e) = d
s (f�) (x) = (dsf � � + fds�) (x) = ! � e

and

�ds� (!; e) = d
s� (f�) (x) =

�
i(df)]�

�
(x) = i!]e;

hence
�ds�ds (!; e) = i!] (! � e) = i!]! � e+ ! � i!]e

and
�dsds� (!; e) = ! � i!]e:

Consequently,

��s (!; e) = �ds�ds+dsds� (!; e) = i!]! � e = g
�
!]; !]

�
e:

De�ne the symmetric Ricci type operator

Rs : S (A;E) �! S (A;E)

by

(Rs�) (a1; : : : ; ak) =
nP
j=1

kP
s=1

�
Rr
ej ;as

�
�
(ej; a1; : : :bas : : : ; ak) ;

the operator
T s : S (A;E) �! S (A;E)

by

(T s�) (a1; : : : ; ak) =
nP
j=1

�
rTA(ej ;as)�

�
(a1; : : : ;bas; : : : ; ak) ;

and next,
Ms : S (A;E) �! S (A;E)

by

(Ms�) (a1; : : : ; ak) =

nX
j=1

kX
s=1

�
irAasej iej + iej irAasej

�
(r�) (a1; : : :bas : : : ; ak) ;
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where � 2 S k (A;E), a1; : : : ; ak 2 � (A), (e1; : : : ; en) is a local orthonormal frame of A,
Rr is the curvature tensor of the connection r : � (A) ! CDO(SkA� 
 E) de�ned in
(5.1). Hence, by Lemma 2,

(Rs�) (a1; : : : ; ak)(5.7)

=

nX
j=1

kX
s=1

�
r2
ej ;as

� �r2
as;ej

�
�
(ej; a1; : : :bas : : : ; ak) + (T s�) (a1; : : : ; ak) :

Theorem 6.

� (ds�ds�) (a1; : : : ; ak) =
�
trr2�

�
(a1; : : : ; ak) +

nX
j=1

kX
s=1

�
r2
ej ;as

�
�
(ej; a1; : : :bas : : : ; ak)

for � 2 S k (A;E).

Proof. Let � 2 S k (A;E), a1; : : : ; ak 2 � (A). Then

� ((ds)� ds�) (a1; : : : ; ak)
= (trrds�) (a1; : : : ; ak)

=

nX
j=1

�
rej (d

s�)
�
(ej; a1; : : : ; ak)

=

nX
j=1

rej ((d
s�) (ej; a1; : : : ; ak))�

nX
j=1

(ds�)
�
rA
ej
ej; a1; : : : ; ak

�

�
nX
j=1

kX
s=1

(ds�)
�
ej; a1; : : : ;rejas; : : : ; ak

�
=

nX
j=1

rej

��
rej�

�
(a1; : : : ; ak)

�
+

nX
j=1

kX
s=1

rej ((ras�) (ej; a1; : : :bas : : : ; ak))
�

nX
j=1

�
rrAej ej

�
�
(a1; : : : ; ak)�

nX
j=1

kX
s=1

(ras�)
�
rejej; a1; : : :bas : : : ; ak�

�
nX
j=1

kX
s=1

�
rej�

� �
a1; : : : ;rA

ej
as; : : : ; ak

�

�
nX
j=1

kX
s=1

�
rrAejas

�
�
(ej; a1; : : :bas : : : ; ak)

�
nX
j=1

kX
s=1

X
t6=s

(rat�)
�
ej; a1; : : : ;rA

ej
as; : : :bat : : : ; ak� :
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One can see that�
trr2�

�
(a1; : : : ; ak)

=

nX
j=1

�
r2
ej ;ej

�
�
(a1; : : : ; ak)

=

nX
j=1

rej

��
rej�

�
(a1; : : : ; ak)

�
�

nX
j=1

kX
s=1

�
rej�

� �
a1; : : : ;rA

ej
as; : : : ; ak

�
�

nX
j=1

�
rrAej ej

�
�
(a1; : : : ; ak)

and �
r2
ej ;as

�
�
(ej; a1; : : :bas : : : ; ak)

= rej ((ras�) (ej; a1; : : :bas : : : ; ak))� (ras�)
�
rA
ej
ej; a1; : : :bas : : : ; ak�

�
X
t6=s

(rat�)
�
ej; a1; : : : ;rA

ej
as; : : :bat : : : ; ak�� �rrAejas

�
�
(ej; a1; : : :bas : : : ; ak) :

Hence

� ((ds)� ds�) (a1; : : : ; ak)

=
�
trr2�

�
(a1; : : : ; ak) +

nX
j=1

kX
s=1

�
r2
ej ;as

�
�
(ej; a1; : : :bas : : : ; ak) :

�

Theorem 7.

(dsds��) (a1; : : : ; ak) = (Ms�) (a1; : : : ; ak)�
kX
s=1

nX
j=1

�
r2
as;ej

�
�
(ej; a1; : : :bas : : : ; ak)

for � 2 S k (A;E).

Proof. Let � 2 S k (A;E), a1; : : : ; ak 2 � (A). Since�
trr2�

�
(a1; : : : ; ak)

=

nX
j=1

�
r2
ej ;ej

�
�
(a1; : : : ; ak)

=

nX
j=1

rej

��
rej�

�
(a1; : : : ; ak)

�
�

nX
j=1

kX
s=1

�
rej�

� �
a1; : : : ;rA

ej
as; : : : ; ak

�
�

nX
j=1

�
rrAej ej

�
�
(a1; : : : ; ak)
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and �
r2
as;ej

�
�
(ej; a1; : : :bas : : : ; ak)

= ras

�
rej�

�
(ej; a1; : : :bas : : : ; ak)� �rrAasej

�
�
(ej; a1; : : :bas : : : ; ak)

= ras

��
rej�

�
(ej; a1; : : :bas : : : ; ak)�� �rej�

� �
rA
asej; a1; : : :bas : : : ; ak�

�
P

t6=s
�
rej�

� �
ej; a1; : : :bas : : :rA

asat : : : ; ak
�
�
�
rrAasej

�
�
(ej; a1; : : :bas : : : ; ak) ;

by (5.4) and (5.6) we have

� ((ds)� ds�) (a1; : : : ; ak)
= (trrds�) (a1; : : : ; ak)

=

nX
j=1

�
rej (d

s�)
�
(ej; a1; : : : ; ak)

=

nX
j=1

rej ((d
s�) (ej; a1; : : : ; ak))�

nX
j=1

(ds�)
�
rA
ej
ej; a1; : : : ; ak

�

�
nX
j=1

kX
s=1

(ds�)
�
ej; a1; : : : ;rA

ej
as; : : : ; ak

�

=

nX
j=1

rej

��
rej�

�
(a1; : : : ; ak)

�
+

nX
j=1

kX
s=1

rej ((ras�) (ej; a1; : : :bas : : : ; ak))
�

nX
j=1

�
rrAej ej

�
�
(a1; : : : ; ak)�

nX
j=1

kX
s=1

(ras�)
�
rA
ej
ej; a1; : : :bas : : : ; ak�

�
nX
j=1

kX
s=1

�
rej�

� �
a1; : : : ;rA

ej
as; : : : ; ak

�
�

nX
j=1

kX
s=1

�
rrAejas

�
�
(ej; a1; : : :bas : : : ; ak)

�
nX
j=1

kX
s=1

X
t6=s

(rat�)
�
ej; a1; : : : ;rA

ej
as; : : :bat : : : ; ak�

=
�
trr2�

�
(a1; : : : ; ak) +

nX
j=1

kX
s=1

�
r2
ej ;as

�
�
(ej; a1; : : :bas : : : ; ak) :

�

As a consequence of theorems 6, 7, de�nitions of T s, Ms and (5.7) we obtain the
following formula on symmetric tensors.

Theorem 8. (Weitzenböck-type Formula for Symmetric Forms)

�s = r�r�Rs �Ms + T s:

Notice that if rA is a metric A-connection, then Ms = 0, and then �s � r�r =
�Rs+ T s. In the case where rA is the Levi-Civita connection, the Weitzenböck formula
for symmetric forms reduces to the shape:

�s = r�r�Rs:
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FORMAL ASPECTS OF TOPOLOGICAL COMPLEXITY

PETAR PAVEŠIĆ

Abstract. We study the concept of topological complexity from the view-
point of fibrewise Lusternik-Schnirelmann category and discuss certain formal
aspects which include the equivalence of various descriptions, the axiomatic
characterization, and the possibility to obtain a decomposition into ∆-sets of
different dimensions.

1. Introduction

The concept of topological complexity was introduced by M. Farber in [4, 5] in
his study of the navigation problem in robotics. Broadly speaking, the navigation
problem refers to the problem of finding a continuous motion that transforms a
mechanical system from some given initial position to a desired final position. To
give a mathematical formulation of this problem one introduces the so-called con-
figuration space, i.e. a topological space that describes all possible states of the
mechanical system. For such a configuration space X one then considers the space
XI of all continuous paths α : I → X, and the evaluation map ev : XI → X ×X
that to a path α assigns its end-points, ev(α) := (α(0), α(1)). A navigation plan
for X is a rule that takes as input a pair of points x, y ∈ X, and returns as out-
put a path α in X starting at x and ending at y. In other words, a navigation
plan is a section of the evaluation map, i.e. a function s : X ×X → XI such that
ev ◦ s = 1X×X . Observe that while the movement through the configuration space
is always assumed to be continuous with respect to the topology of the configura-
tion space, this is not necessarily the case for the navigation plan. In fact, one can
easily show that a continuous navigation plan exists if and only if X is contractible.
Thus, for non-contractible spaces one is naturally led to consider navigation plans
that are continuous only when restricted to subsets of X ×X.

Farber [4] exploited the fact that ev : XI → X ×X is a fibration, and defined the
topological complexity of path-connected space X to be the Schwarz genus [19] of
the fibration ev, i.e. the minimal n for which X×X can be covered by open subsets
U1, . . . , Un such that each of them admits a continuous section si : Ui → XI of ev.
A very similar approach was previously used by S. Smale [20] and A. Vassiliev [21]
in their investigation of the topological complexity of algorithms for finding roots
of polynomial equations. Observe that strictly speaking, the sections si : Ui → XI

do not determine a navigation plan for X because the elements of the open cover of
X must overlap, so over their intersections one has a multiple choice of navigation

1991 Mathematics Subject Classification. 55R70, 55M30.
Key words and phrases. topological complexity, fibrewise Lusternik-Schnirelmann category.
The author was supported by the Slovenian Research Agency grant P1-02920101.
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plans. To avoid this difficulty, one may decompose X×X into disjoint subsets such
that the restriction of some global navigation plan to each of them is continuous.
Clearly for a non-contractible configuration space, every such global navigation plan
must be discontinuous, and that fact is sometimes described as the instability of the
navigation planning algorithm. Farber [5] tackled this problem and proved that the
topological complexity provides a suitable measure for the level of this instability.

It is clear from the definition that the topological complexity TC(X) is a homotopy
invariant of X, and so it has recently attracted a lot of interest among homo-
topy theorists. This resulted in a series of interesting developments, variations
and reformulations of the original idea. In particular, methods from the classical
Lusternik-Schnirellman (LS) category, in particular the Whitehead-Ganea approach
was developed in a series of papers [11], [12] and [13] by G. Calcines and L. Van-
dembroucq.

The alternative fibrewise LS category viewpoint was introduced by N. Iwase and M.
Sakai in [15], and further applied and developed in [8], [9] and [10]. The fibrewise
formulation avoids the use of function spaces, so the resulting theory has more
geometric flavour and opens the possibility of extensive application of the methods
of LS category to problems in topological complexity. In the first two section of
this paper we use the Iwase-Sakai approach to give a uniform overview of known
facts about the absolute and relative topological complexity together with slick and
efficient proofs. The remaining sections exploit the alternative approach to obtain
a couple of new results on the axiomatic approach to the topological complexity
and on some useful dimension-wise decompositions.

2. Topological complexity as fibrewise category

In this section we show that the topological complexity of X can be described in
terms of decompositions of the product X ×X into subsets that can be deformed
into the diagonal. and investigate the relations between different kinds of such
decompositions.

Let X be a path-connected space and let ev : XI → X × X be the evaluation
fibration ev(α) =

(
α(0), α(1)

)
. A subset F ⊆ X×X admits a continuous navigation

plan if there is a continuous map s : F → XI such that ev ◦ s = 1F . Various
descriptions of the topological complexity of X are related to different ways to
decompose of X×X into subsets that admit continuous navigation plans. We may
broadly distinguish four different approaches as follows.

1. Originally [4] the topological complexity of X was defined as the Schwarz genus
of the fibraton ev : XI → X×X. The Schwarz genus of a fibration p : E → B is the
minimal n for which B can be covered by n open sets U1, . . . , Un, such that each of
them admits a continuous local section si : Ui → E of p. The use of open covers is
standard in homotopy theory and allows direct comparison with other invariants.
For example, recall that cat(X), the Lusternik-Schnirelmann category of X, is the
minimal n for which X can be covered by n open sets U1, . . . , Un, such that each
Ui ↪→ X is null-homotopic, (i.e. each Ui can be deformed to a point inside X). One
then have the following basic estimate (cf. [7, Section 4.2])

(2.1) cat(X) ≤ TC(X) ≤ cat(X ×X) ≤ 2 cat(X)− 1 .
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2. For applications in robotics the unavoidable overlapping of the sets of an open
cover of X ×X sometimes creates problems because it introduces a level of ambi-
guity on which navigation plan should be used for pairs of points that lie in the
intersections. It is therefore often preferable to use partitions of X × X into dis-
joint subsets, so that the choice of the navigation plan is uniquely determined by
the input data. Furthermore, we want to avoid subspaces with bad local properties.
For that reason Farber [5] considered decompositions of X ×X as disjoint unions
of euclidean neighbourhood retracts. Recall that X is an euclidean neighbourhood
retract (ENR) if it is homeomorphic to a retract of an open subset of some eu-
clidean space Rn. More intrinsically, X is an ENR if it is locally compact, locally
contractible, and embeddable in some euclidean space (see [2, Section IV,8]). The
class of ENR’s contains all finite-dimensional cell complexes and all manifolds. Then
one can consider global navigation plans for X that are continuous when restricted
to the elements of some ENR-partition ofX×X (i.e. a decomposition into a disjoint
union of ENR’s). For example, Farber [5] proved that for a connected polyhedron
X the topological complexity of X equals the minimal n for which X ×X has an
ENR-partition into n subsets that admit continuous navigation plans.

3. Navigation plans that come up in applications are often defined locally, on
small subsets of the product X ×X. For example, we can describe simple-minded
navigation plans on a polyhedron X as follows. We first choose a maximal tree
T in the 1-skeleton of X. Then for each pair of vertices x, y ∈ X we define a
navigation plan on the product of open stars st(x)× st(y) by combining the unique
path in T between x and y with the straight segments in the respective stars. The
number of elements in such a cover of X × X by sets admitting navigation plans
is in general much bigger then TC(X). Since most of the elements are disjoint
one may aggregate them to produce covers with less elements but this is usually
impractical. There us however a different way to measure the complexity of such
navigation plans. Given a cover U of X the weight of U is the maximal number
of elements of U that have non-empty intersection. We will see later on that the
weights if such covers are bounded bellow by the topological complexity of X.

4. Finally we can combine locally defined navigation plans with the requirement
that their domains of definition are disjoint ENR’s. Given a global navigation plan
s : X ×X → XI and some cover {Fλ} of X ×X by mutually disjoint ENR’s, such
that the restrictions s|Fλ

are continuous, Farber [5] defined the order of instability
of this partition to be the weight of the cover {Fλ}. Once again, the topological
complexity turns out to be the precise lower bound for the orders of instability of
such partitions.

We now turn our attention from navigation plans to deformations of subsets of
X×X, starting from the following simple observation: every continuous navigation
plan s : F → XI by adjunction determines a homotopy ŝ : F × I → X ×X, given
by

ŝ(x, y, t) :=
(
x, s(x, y)(1− t)

)
.

Since s(x, y)(0) = x and s(x, y)(1) = y the homotopy ŝ is clearly a vertical (i.e along
the second factor) deformation of F to a subset of the diagonal ∆X = {(x, x) ∈
X ×X}. This was already noted in [6, Section 18] and further developed by Iwase
and Sakai in [15]. The main advantage of this alternative viewpoint is that a
deformation of a space is much easier to visualize than a map into a path space.
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Every subset ofX×X that can be vertically deformed to a subset of the diagonal will
be called ∆-set. Various characterizations of topological complexity are summarized
in the following theorem.

Theorem 1. If X is an ENR then the topological complexity of X equals the
minimal n for which one (and hence all) of the following conditions is satisfied.

(1) There exists a cover of X ×X by n open ∆-sets.
(2) There exists a cover of X ×X by n closed ∆-sets.
(3) There exists an ENR-partition of X ×X into n disjoint ∆-sets.
(4) There exists a filtration ∅ = F0 ⊆ F1 ⊆ . . . ⊆ Fn = X×X by closed subsets,

such that each Fi − Fi−1 is a ∆-set.
(5) There exists a filtration ∅ = U0 ⊆ U1 ⊆ . . . ⊆ Un = X ×X by open subsets,

such that each Ui − Ui−1 is a ∆-set.
(6) There exists a filtration ∅ = C0 ⊆ C1 ⊆ . . . ⊆ Cn = X × X by locally

compact subsets, such that each Ci − Ci−1 is a ∆-set.
(7) X ×X admits a cover of weight n by open ∆-sets.
(8) X ×X admits a cover of weight n by closed ∆-sets.
(9) There exists an ENR-partition of X ×X into disjoint ∆-sets, whose order

of instability equals n.

Proof. (1) is just a reformulation of the definition of the Schwarz genus. (2) is
equivalent to (1) because as in the case of Lusternik-Schnirelmann category (cf. [17])
for spaces that are normal and neighbourhood retracts one can always work with
closed instead of open coverings, and vice versa. (3) follows from [7, Proposition
4.9]. (4)-(6) correspond to the characterizations of [7, Proposition 4.12]. (7),(8)
follow from [7, Corollary 4.14]. Finally (9) follows from [6, Theorem 13.1]. ¤

We are now going to relate the characterization (1) in the above theorem to a spe-
cial case of fibrewise Lusternik-Schnirelmann category. Take a ∆-set U ⊆ X ×X
and consider the projection π : X ×X → X of the product to the first factor. Re-
strictions of the homotopy that deforms U to the diagonal to the (possibly empty)
intersections Vx := U ∩pr−1(x) ⊆ {x}×X yields a family of homotopies indexed by
points of X that deform sets Vx within X to the point x. This precisely corresponds
to the idea of a fibrewise deformation of set to a point, on which the following defi-
nition of fibrewise Lusternik-Schnirelmann category is based (cf. [18]). A fibrewise
pointed space is a map p : E → B together with a section s : B → E: we view this
structure as a continuous family of pointed spaces p−1(b), each of them based at
the point s(b). Its fibrewise Lusternik-Schnirelmann category is the minimal n for
which E can be covered by open sets U1, . . . , Un such that for each i there is a
fibrewise homotopy deforming Ui to a subset of the section s(B) ⊂ E.

Let us consider the fibrewise pointed space over the base X whose total space is the
product X ×X, π : X ×X → X is projection to the first factor and the section is
given by the diagonal map ∆: X → X ×X. We will denote this fibrewise pointed
space by XnX where the semi-direct sign indicates that we have a ’twisted’ familly
of fibres indexed by the points of X, where the base ’acts’ on the fibres by sliding
the base-point. We may now conclude that TC(X) coincides with the fibrewise
Lusternik-Schnirelmann category of X nX.
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There are two important caveats regarding the role of the base-points (i.e. sections)
that one must keep in mind when discussing the fibrewise category as related to
the classical category. In the classical LS category the role of the base-points is
minor, because for spaces with nice local behaviour the pointed and unpointed
category coincide, and their value does not depend on the choice of the base-point.
In fact, one can use the homotopy extension property and arrange that all sets
of a categorical cover are deformed to the same point, and that all deformations
are stationary at that point. Contrary to that, two sections of a fibrewise space
may not be fibrewise homotopic, and the category with respect to one section can
be completely different from the category with respect to some other section. For
example the diagonal section of π : S2 × S2 → S2 is clearly not homotopic to the
constant section, and the fibrewise category of π : S2×S2 → S2 with respect to the
diagonal section equals the topological complexity TC(S2) = 3, while the fibrewise
category of π with respect to the constant section is the same as the ordinary
category cat(S2) = 2.

The second point is even more delicate. First of all, we define (following [18]) the
fibrewise pointed category of the fibrewise pointed space p : E → B with section
s : B → E as the minimal n for which E can be covered by open sets U1, . . . , Un

such that for each i s(B) ⊂ Ui and the fibrewise homotopy deforming Ui to s(B)
is stationary on s(B). The fibrewise pointed category is more adequate for the
application of the homotopy-theoretical methods (cf. [18, Section 6], [15]), but it
is not clear under what conditions the two notions coincide. In fact Iwase and
Sakai [15] proposed a proof that pointed fibrewise category equals the unpointed
fibrewise category for locally finite complexes but unfortunately their proof was
flawed, see the Errata [16]. At the moment the best result in this direction is by
A. Dranishnikov [3], who proved that the two versions of fibrewise category of X
coincide when certain assumptions on the dimension of X are satisfied.

3. Subspace complexity

In this section we consider the topological complexity of subspaces of X ×X. We
assume throughout that X is a Euclidean neighbourhood retract. Let A ⊆ X ×X
The subspace topological complexity of A, denoted TCX(A) is the least integer n for
which there exists a cover of A by n open ∆-subsets of X×X. Of course, instead of
covers by open sets we can use any of the equivalent descriptions of the topological
complexity listed in Theorem 1. It is easy to see that the subspace complexity
coincides with the relative complexity of A, which was defined in [7, Section 4.3] as
the Schwarz genus of the restriction over A of the evaluation fibration XI → X×X.

Let us list a few relations that follow immediately from the definition (most of them
already appeared in the literature, cf. [7], Chapter 4 and in particular Section 4.3).
First, we recover the topological complexity of X as

(3.1) TC(X) = TCX(X ×X).

If X ⊆ Y and A ⊆ B ⊆ X ×X then

(3.2) TCY (A) ≤ TCX(B).
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If A,B ⊆ X ×X then

(3.3) TCX(A ∪B) ≤ TCX(A) + TCX(B).

Moreover, if A,B are separated open subsets of X ×X (i.e. A ∩ B = A ∩ B = ∅)
then

(3.4) TCX(A ∪B) = max{TCX(A),TCX(B)}.

The interplay between different characterizations given in Theorem 1 allows for
unified and efficient proofs of the various estimates for topological complexity. To
exemplify this approach we briefly summarize few most relevant results. we begin
with a lemma that gives us plenty of ∆-sets.

Lemma 2. Let X be a Euclidean neighbourhood retract.

(1) Any subspace of X ×X that can be deformed within X ×X into a ∆-set is
itself a ∆-set. In particular, every product of two categorical subsets of X
is a ∆-set (since it can be deformed to a point within X ×X).

(2) A union of a family of separated open ∆-sets is a ∆-set.
(3) If h : X nX → Y nY is a homeomorphism of fibrewise pointed spaces then

A is a ∆-set in X ×X if, and only if h(A) is a ∆-set in Y × Y .

Proof. (1) Let A ⊆ X × X, and let H : A × I → X × X be a deformation of A,
such that A′ = H1(A) is a ∆-set. If we denote by D′ : A′ × I → X ×X a vertical
deformation of A′ to the diagonal ∆X, than we obtain a vertical deformation D of
A to the diagonal by the formula

pr2D(x, y, t) :=





pr2 (H(x, y, 3t)) 0 ≤ t ≤ 1
3

pr2 (D
′(H(x, y, 1), 3t− 1)) 1

3 ≤ t ≤ 2
3

pr1 (H(x, y, 3− 3t)) 2
3 ≤ t ≤ 1

(2) Recall that a family of subsets of a topological space is separated if the closure of
each of them does not intersect the others. Clearly, when open ∆-sets are separated,
then their deformations to the diagonal combine to a continuous deformation of
their union to the diagonal.

3) A homeomorphism h : X×X → Y ×Y is a homeomorphism of fibrewise pointed
spaces if there is a homeomorphism h̄ : X → Y such that h̄ ◦ πX = πY ◦ h and
h ◦∆X = ∆Y ◦ h̄, so that the following diagram commutes

X ×X
h //

πX

²²

Y × Y

πY

²²
X

h̄

//

∆X

OO

Y

∆Y

OO

Then a deformationH : A×I → X×X of A to the diagonal ∆X yields a deformation

H : h(A)× I → Y × Y, H(y, y′, t) := h(H(h−1(y, y′), t)

of h(A) to the diagonal ∆Y . ¤
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Part (1) of the above Lemma implies that every categorical subset of X × X is
automatically a ∆-set, which immediately yields a relation between the subspace
topological complexity and subspace category:

(3.5) TCX(A) ≤ catX×X(A).

If B ⊆ X ×X can be deformed into some A ⊆ X ×X (i.e., there is a deformation
H : B × I → X ×X, such that H1(B) = H(B × 1) ⊆ A), then

(3.6) TCX(B) ≤ TCX(A).

In fact given a cover ofA by ∆-sets U1, . . . , Un, the pre-imagesH−1
1 (U1), . . . , H

−1
1 (Un)

cover B and are also ∆-sets by (1) of Lemma 2. As a special case, if B ⊆ X ×X
can be deformed to its subset A ⊆ B, then by 3.2

(3.7) TCX(A) = TCX(B).

Let X,Y be ENR’s with TC(X) = m and TC(Y ) = n. Then by Theorem 1 (5)
there exist a filtration ∅ = X0 ⊆ X1 ⊆ . . . ⊆ Xm = X ×X such that all Xi −Xi−1

are ∆-sets in X ×X and a filtration ∅ = Y0 ⊆ Y1 ⊆ . . . ⊆ Yn = Y × Y such that
all Yj − Yj−1 are ∆-sets in Y × Y . If we define Zk :=

⋃
i+j=k+1 Xi × Yj we obtain

a filtration ∅ = Z0 ⊆ Z1 ⊆ . . . ⊆ Zm+n−1 = (X × Y ) × (X × Y ). We directly
verify that Zk − Zk−1 =

∐
i+j=k+1(Xi −Xi−1)× (Yj − Yj−1) is a disjoint union of

separated ∆-sets, and conclude that

(3.8) TC(X × Y ) < TC(X) + TC(Y ).

Let G be a topological group. If U ⊆ G is an open categorical set, that can be
deformed to the unit e ∈ G then

⋃
g∈G{g} × gU is clearly a ∆-set in G × G. It

follows that a categorical cover of G gives rise to a cover of G×G by ∆-sets, hence

(3.9) TC(G) = cat(G).

4. Axiomatic characterization of topological complexity

Some of the properties listed in the previous section are sufficient to character-
ize precisely the subspace topological complexity among integer-valued functions
with similar properties. In fact, we are going to show that the formulas 3.2, 3.3
and 3.6, together with a normalization requirement are sufficient to determine the
topological complexity of a space. This approach is analogous to the axiomatic
characterization of the Lusternik-Schnirelmann category as in [1].

Let us define the abstract topological complexity on a space X to be a function
denoted tc(·) that assigns a positive integer to every non-empty subset A of X ×X
and satisfies the following properties:

(tc1) tc(∆X) = 1;
(tc2) If A ⊆ B ⊆ X ×X then tc(A) ≤ tc(B);
(tc3) If A,B ⊆ X ×X then tc(A ∪B) ≤ tc(A) + tc(B);
(tc4) If A,B ⊆ X × X, and B can be vertically deformed within X × X to a

subset of A
then tc(B) ≤ tc(A).
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By the results from the previous section we know that the subspace topological
complexity TCX(·) satisfies the conditions for the abstract topological complexity.
We may now consider the set of all abstract topological complexities and order
them as follows: if tc1 and tc2 are two abstract topological complexities, let

tc1(·) ≤ tc2(·) ⇐⇒ tc1(A) ≤ tc2(A) for all A ⊆ X.

Let tc(·) be an abstract topological complexity, and let U be a non-empty ∆-subset
of X ×X. Then U can be vertically deformed to a subset of ∆X, so by (tc1) and
(tc4) we have tc(U) ≤ tc(∆X) = 1, therefore tc(U). Furthermore, If A ⊆ X ×X
can be covered by n open ∆-subsets U1, . . . , Un of X ×X then by (tc2) and (tc3)

tc(A) ≤ tc(U1 ∪ . . . ∪ Un) ≤ tc(U1) + . . .+ tc(Un) = n.

Since TCX(A) is precisely the minimal number of open ∆-subsets of X ×X that
are necessary to cover A we may conclude from the above discussion that

tc(A) ≤ TCX(A).

We have therefore proved the following result

Theorem 3. The subspace topological complexity TCX(·) is the maximal element
among all abstract topological complexities defined on subspaces of X ×X.

5. Dimension-wise ∆-sets

The standard minimal decompositions of Sn × Sn into a disjoint union of ENR
∆-sets that yield the topological complexities of the spheres are well known. For
odd-dimensional spheres we can take

A = {(x, y) ∈ Sn × Sn | x+ y 6= 0}
and

B = {(x, y) ∈ Sn × Sn | x+ y = 0},
and the dimensions are dim(A) = 2n and dim(B) = n. On the other side, for
even-dimensional spheres we may take

A = {(x, y) ∈ Sn × Sn | x+ y 6= 0},
B = {(x, y) ∈ Sn × Sn | x+ y = 0} − C,

and
C = {(N,−N), (−N,N)}

(where N ∈ Sn denotes the north pole), and the respective dimensions of the sets
involved are 2n, n and 0. One naturally wanders whether it is possible to achieve
the same (i.e. ∆-sets of different dimensions) in the general case. We are going to
prove this fact in the following form.

Theorem 4. Let X be a connected ENR and let A ⊆ X × X be an ENR subset
whose subspace topological complexity is TCX(A) = n. Then A can be decomposed
as a disjoint union A = X1 t . . . t Xn, where each Xi is an ENR ∆-set and
dim(A) = dim(X1) > dim(X2) > . . .dim(Xn) ≥ 0.

In particular, if X is a connected ENR whose topological complexity is TC(X) = n,
then X×X = X1t . . .tXn, where Xi are ENR ∆-sets and 2 dim(X) = dim(X1) >
dim(X2) > . . .dim(Xn) ≥ 0.
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The proof of the theorem is based on the following auxiliary result.

Lemma 5. For every ENR subset A ⊆ X × X there exists an ENR subset B ⊂
X ×X such that TCX(A) > TCX(B), dim(A) > dim(B) and (A−B) is a ∆-set.

Proof. For TCX(A) = 1 we take B := ∅.
Let TCX(A) = n and assume inductively that the claim holds for all B ⊆ X ×X
with TCX(B) < n. Let U1, . . . , Un be a cover of A by open ∆-sets in X. Then by
the normality of X, and by the properties of the small inductive dimension, we can
find an open set V1 in X such that

A− U2 − . . .− Un ⊆ V1 ⊆ V 1 ⊆ U1,

and satisfying the requirement dim(V 1−V1) < dim(A). We can furthermore find an
open cover V2, . . . , Vn of U2∪. . .∪Un such that V i ⊆ Ui and dim(V i−Vi) < dim(A).

Define B := (V 1 − V1) ∪ . . . ∪ (V n − Vn), so that clearly, dim(B) < dim(A).
Moreover, B is by the construction contained in the union U2 ∪ . . . ∪ Un, hence
TCX(B) < TCX(A). Each component of A−B is a ∆-set, as it contained in some
Ui. Since the components of A−B are separated 3.4 implies that A−B itself is a
∆-set, which concludes the proof. ¤

Proof. (of Theorem 4)
If TCX(A) = n we can inductively apply the above lemma to obtain spaces A =
A1 ⊃ A2 . . . ⊃ An ⊃ An+1 = ∅ such that dim(Ai) > dim(Ai+1) and (Ai − Ai+1)
are ENR ∆-sets. To obtain the decomposition stated in the theorem we let Xi :=
Ai −Ai+1. Moreover, it is clear that dim(A) = dimX1. ¤

If X is a polyhedron with TC(X) = n then the above argument can be easily
modified to obtain a filtration ∅ ≤ X1 ≤ . . . ≤ Xn = X ×X by polyhedra whose
dimension is strictly increasing, and such that each Xi − Xi−1 is a ∆-set. If X
is (p− 1)-connected then by Cellular approximation theorem every subcomplex of
dimension less then p is a ∆-set, which implies that dim(X2) ≥ p. It would be
interesting to know (at least for the case when p divides dim(X)) whether we can
extend further the analogy with the spheres and obtain a filtration of X × X as
above, by subpolyhedra whose dimensions are multiples of p.
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( Dept. de Matemática - IME - USP, Caixa Postal 66.281 - CEP
05314-970, São Paulo - SP, Brazil, Departamento de Matemática,
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The main purpose of this work is to study fixed points of fiber- preserv-

ing maps over S1 on the trivial surface bundles S1 × S2, where S2 is the

closed orientable surface of genus 2. We classify all such maps that can be

deformed fiberwise to a fixed point free map.

Introduction

Given a fibration E → B and f : E → E a fiber-preserving map over
B, the question if f can be deformed over B (by a fiberwise homotopy) to

c© D. L. Gonçalves, A. K. M. Libardi, D. Penteado, J. P. Vieira, 2013
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a fixed point free map has been considered for several years by many au-
thors. Among others, see for example [Dol74], [FH81], [Gon87], [Pen97],
[GPV04], [GPV09I] and [GPV09II]. More recently also the fiberwise co-
incidence case has been considered in [Kos11], [GK09], [GPV10], [SV12],
[Vie12] and [GKLN], which certainly has intersection with the fixed point
case.

In [FH81], Fadell, E. and Husseini, S. showed that the fiberwise fixed
point problem can be stated in terms of obstructions (including higher
ones) if the fibration satisfies certain hypothesis. This is the case if the
base space, the total space and the fiber F are manifolds, and the dimen-
sion of F is greater or equal to 3. The project to study fixed point of
fiberwise maps for surface bundles has been considered mainly in the case
where the base is S1 and it can be divided into several cases as follows.

If the fiber F is the projective real space RP 2 we never obtain a fixed
point free fiberwise map, because RP 2 has the fixed point property. This
case leads to a natural question about the minimal size of the fixed point
set, namely, when is possible to have the fixed point set connected. Close
related, if not equivalent, is the problem of classify maps which can be
deformed to a map with exactly one fixed point in each fiber.

The case of fiber S2, despite the fact that the approach of [FH81] can
be used, using different techniques, it was studied in [Kos11], [GPV10]
and [GKLN].

We note that if the fiber is a closed surface S distinct of S2 and RP 2,
the approach of [FH81] can not be used. A project to study surface
bundles for closed surface distinct of S2 and RP 2 has started looking
the case where the base is S1. The case where S is the torus has been
solved by other methods in [GPV04] (see also [Kos11]). For S the Klein
bottle the results were obtained in [GPV09II] (see also [SV12]) by similar
methods as the case of the torus.

In the present work we start the case of a surface bundle over S1
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where the fiber is S2 and S2 is the closed orientable surface of genus 2.
More precisely we study fiberwise maps of the trivial bundle S1 × S2.

Let us consider the fibration S1×S2 → S1 and h : S1×S2 −→ S1×S2

a fiber-preserving map over S1, where h(x, y) = (x, f(x, y)), ∀(x, y) ∈
S1 × S2 and f is a map from S1 × S2 into S2.

The main result of this paper is:

Theorem 4.3 A fiberwise map h can be deformed over S1 to a fixed
point free map if and only if h is fiberwise homotopic to id × g where
g : S2 → S2 is a fixed point free map homotopic to f restricted to 1×S2.

This paper is organized into 4 sections. In section 1 we review an
approach to study fixed point of fiberwise maps and we adapt it for the
case to be analyzed. In section 2 we make the main calculations where we
compute the fundamental group of several spaces and homomorphisms
to study a certain algebraic diagram. The main result of this section is
Theorem 3.5. In section 3 we proof the main result of this work, which is
Theorem 4.3. In section 4 we give a very brief view of the continuation
of the study of the problems for the majority of the cases, which are still
to be analyzed.

2 Preliminaries

Let h : E → E be a fiber-preserving map over B, i.e., p ◦ h = p where
p : E → B is a fiber bundle with fiber a surface denoted by S. When is h
deformable over B to a fixed point free map h

′
by a fiberwise homotopy

over B ? We remark that in order to have a positive answer a necessary
condition is that the map h restricted to a fiber is deformable to a fixed
point free map.

Now we review an approach which was used in [GPV04] and
[GPV09II]. Assuming the necessary condition, h is deformable over B to
a fixed point free map h

′
by a fiberwise homotopy over B if and only if
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there exists a lifting ψ such that the following diagram is commutative,
up to homotopy:

F

��
E(E ×B E −∆)

e1

��
E

ψ
88

(h,1)
// E ×B E

(2.1)

Here E ×B E is the pullback of p by p, ∆ is the diagonal in E ×B E
and the inclusion E ×B E − ∆ ↪→ E ×B E is changed by the fibration
e1 : E(E ×B E −∆)→ E ×B E with fiber F , where πi(F) ' πi+1(E ×B
E,E ×B E − ∆). Also E(E ×B E − ∆) is the pullback of the fibration
e0 : (E ×B E)[0,1] → E ×B E by the inclusion E ×B E −∆ → E ×B E.
The fibration e0 : (E ×B E)[0,1] → E ×B E is the evaluation at 0 and
e1 : E(E ×B E −∆)→ E ×B E is the evaluation at 1.

Let us observe that if E,B and S are closed manifolds then πi+1(E×B
E,E ×B E −∆) ' πi+1(S, S − y0) (see [FH81]).

When E = B × S is the trivial bundle and h : B × S → B × S

is a fiber-preserving map over B, the map h can be write in the form
h(x, y) = (x, f(x, y)) for some f : B × S → S. Then the diagram 2.1 can
be modified and becomes equivalent to the following diagram:
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F

��
E(B × (S × S −∆))

e1

��
B × S

ψ
66

(1,f,1)
// B × S × S

(2.2)

3 Trivial S−bundles over S1 with χ(S) < 0

Let S be a surface with χ(S) < 0 and let us consider the fibration
S1 × S → S1 and h : S1 × S −→ S1 × S a fiber-preserving map over S1,
where h(x, y) = (x, f(x, y)), ∀(x, y) ∈ S1×S and f is a map from S1×S
into S. We also consider x0 and y0 base points of S1 and S, respectively,
and f : (S1 × S, (x0, y0)) −→ (S, f(x0, y0)), with f(x0, y0) 6= y0. From
the map f we obtain the maps g = f |{x0}×S and l = f |S1×{y0}. Recall
that we are assuming the necessary condition: the map g is deformable
to a fixed point free map.

Using the approach developed in [GPV04] and [GPV09II] we will
study in our case the existence of an algebraic lifting ψ to the diagram
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1

��
π1(F)

��

' π2(S, S − x0)

π1(E(S1 × (S × S −∆)))

q#=1π1(S1)×j#
��

' π1(S1 × (S × S −∆))

π1(S1 × S)

ψ
55

(1,f,1)#

// π1(S1 × S × S)

��
1

(3.1)

where π1(F) ' π1(S × S −4) is the pure braid group of S on 2-strings.

The existence of the lifting mentioned above is equivalent to find lift-
ings θ and φ described in diagrams 3.2 and 3.3 below where θ and φ

satisfy certain conditions. Since we are assuming the necessary con-
dition then the lifting φ exists. So, we have the following two dia-
grams, where i1#, i2# and j# are induced homomorphisms on funda-
mental groups by the injective maps i1 : S1 → S1 × S, i2 : S → S1 × S
and j : S × S −∆ → S × S, respectively, and q2# and pi# are induced
homomorphisms by the projection maps q2 : S1 × S × S → S × S and
pi : S × S → S, respectively.

π1(S × S −∆)

j#

''

pi|# // π1(S)

π1(S1)

θ

33

i1#

// π1(S1 × S)
(1,f,1)#

// π1(S1 × S × S)
q2#

// π1(S × S)

pi#

OO (3.2)
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π1(S × S −∆)

j#

''

pi|# // π1(S)

π1(S)

φ

33

i2#

// π1(S1 × S)
(1,f,1)#

// π1(S1 × S × S)
q2#

// π1(S × S)

pi#

OO (3.3)

We remark that in these diagrams we are omitting base points.
The following theorem provides some conditions that the liftings θ

and φ must satisfy which are equivalent to a positive solution of the fixed
point problem for the trivial bundle.

Theorem 3.1. There exists ψ on the diagram 3.1 if and only if there
exist θ and φ in the diagrams 3.2 and 3.3, respectively, such that Imθ
commutes with Imφ.

Proof. Let us suppose that there exists a lifting ψ in the diagram (2.1).
Define φ = q2|#◦ψ◦i2# and θ = q2|#◦ψ◦i1#, where i1 : S1 → S1×S and
i2 : S → S1 × S denote the inclusion maps and q2| : S1 × (S × S −∆)→
(S × S − ∆) denotes the projection on the second factor. Therefore
θ and φ are lifting for the diagrams 3.2 and 3.3, respectively, because
q# ◦ ψ = (1, f, 1)# and q2# ◦ q# = j# ◦ q2|#.

Now, for all x ∈ Imθ and for all y ∈ Imφ we have

xy = q2|# ◦ ψ ◦ i1#([b])q2|# ◦ ψ ◦ i2#([s])

= q2|# ◦ ψ(i1#([b])i2#([s]))

= q2|# ◦ ψ(([b], 1)(1, [s]))

= q2|# ◦ ψ((1, [s])([b], 1))

= q2|# ◦ ψ(i2#([s])i1#([b]))

= q2|# ◦ ψ ◦ i2#([s])q2|# ◦ ψ ◦ i1#([b])

= yx

Conversely, suppose that θ and φ exist and we define ψ by ψ([b], [s]) =

([b], θ([b]) φ([s])) where b : S1 → S1 and s : S1 → S denote loops
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based at x0 and at y0, respectively. Since Imθ commutes with Imφ,
we have that ψ is a homomorphism and denoting by s0 : S1 → S and
b0 : S1 → S1 the constant maps at y0 and at x0, respectively, it follows
that (q# ◦ ψ)([b], [s]) = (1, f, 1)#([b], [s]),∀([b], [s]) ∈ π1(S1 × S).

From now on we specialize for the case where the fiber S is the surface
S2. So we consider the trivial bundle S1 × S2.

If φ is a lifting of the diagram 3.3 to discuss the existence of the
lifting θ we will denote by 1 a generator of π1(S1) ≡ Z and by θ(1) = ω ∈
π1(S2×S2−∆). A presentation of π1(S2×S2−∆) is given in [FH82]. We
will use the following notation: let ai = ρ1,i ∈ π1(S2×S2−∆), i = 1, 2, 3, 4

and by bi = ρ2,i ∈ π1(S2 × S2 −∆).
So π1(S2 × S2 −∆) has the following presentation:

(I) [a1, a
−1
2 ][a3, a

−1
4 ] =: B1 = B−1

2 := [b1, b
−1
2 ][b3, b

−1
4 ] (which defines

the elements B1 and B−1
2 ).

(II) blajb−1
l = aj where 1 ≤ j, l ≤ 4, and j < l(resp. j < l − 1) if l is

odd (resp. l is even).

(III) bkakb−1
k = ak[a−1

k , B1] and b−1
k akbk = ak[B−1

1 , ak] for all 1 ≤ k ≤ 4.

(IV) bkak+1b
−1
k = B1ak+1[a−1

k , B1] and b−1
k ak+1bk =

B−1
1 [B1, ak]ak+1[B−1

1 , ak], for all k odd, 1 ≤ k ≤ 4.

(V) bk+1akb
−1
k+1 = akB

−1
1 , and b−1

k+1akbk+1 = akB1[B−1
1 , ak+1], for all

k odd, 1 ≤ k ≤ 4.

(VI) blajb−1
l = [B1, a

−1
l ]aj [a

−1
l , B1] and b−1

l ajbl = [al, B
−1
1 ]aj [B

−1
1 , al]

for all 1 ≤ l < j ≤ 4 and (j, l) 6= (2t, 2t− 1) for all t ∈ {1, 2}.

We also observe that from the fibration p2 |: S2 × S2 −∆ −→ S2 we
get the following exact sequence:

1 // π1(S2 − y0) // π1(S2 × S2 −∆)
p2|# // π1(S2) // 1 .

(3.4)
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The group π1(S2 − y0) is free and from the sequence above it is
identified with the subgroup of π1(S2 × S2 − ∆) freely generated by
a1, a2, a3, a4. Also the image of the set of elements b1, b2, b3, b4 projects
to a set of generators of π1(S2) giving a presentation of π1(S2) =<

b̄1, b̄2, b̄3, b̄4 | [b̄1, b̄
−1
2 ][b̄3, b̄

−1
4 ] >. More details see [FH82].

Given a group G the central series of G is defined recursively by

G1 = G,Gn+1 = [G,Gn], n = 1, 2, . . . .

For any group G we have that Gm is a normal subgroup of Gn for all
n ≤ m. In case G is free group of finite rank r then it is well known that
Gn/Gn+1 is a free abelian of rank

Nn =
1

n

∑
d|n

µ(d)r
n
d

(see [[MKS76],Theorem 5.11, p.330]). Here µ(d) denotes the Moebius
Function defined for all positive integers by µ(1) = 1, µ(p) = −1 if p is
a prime number, µ(pk) = 0 for k > 1, and µ(b · c) = µ(b) · µ(c) if b and c
are coprime integers.

For any group G denote the commutator [[a, b], c] by (a, b, c). If a, b, c
are elements of a group G and k,m, n are positive integers such that
a ∈ Gk, b ∈ Gm, c ∈ Gn then (a, b, c)·(b, c, a)·(c, a, b) ≡ 1 mod Gk+m+n+1

(see [[MKS76], Theorem 5.3, p.293]).
For the next Lemma, let G = G1 = π1(S2− y0) which is a free group,

and it is identified with a subgroup of π1(S2 × S2 − ∆) using the short
exact sequence 3.4.

Lemma 3.2. If v ∈ G2 = [G1, G1], then [bj , v] ∈ G3, for j = 1, 2, 3, 4.

Proof. We will prove the statement for b3. The other cases are simi-
lar. If v ∈ G2 = [G1, G1], then v is a finite product of [ai, aj ] and
of its inverses. If v1, v2 ∈ G2 then [b3, v1v2] = b3v1v2b

−1
3 v−1

2 v−1
1 =

b3v1b
−1
3 v−1

1 v1b3v2b
−1
3 v−1

2 v−1
1 = [b3, v1]v1[b3, v2]v−1

1 . We know that the
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conjugation by v1 preserves the central series and then if we prove that
[b3, [ai, aj ]] = 1 mod G3 the result follows.

Now in G1/G3, we have that

[b3, [ai, aj ]] = b3[ai, aj ]b
−1
3 [ai, aj ]

−1 = b3aiaja
−1
i a−1

j b−1
3 [ai, aj ]

−1.

In the case where i 6= 4 and j 6= 4 and recalling that in G1/G3, b3
commutes with ai and aj (i.e, the action is trivial) we have the desired
result.

If i = 4 and j 6= 4 we also have that b3 commutes with aj because
j 6= 4 and the action in a4 results in B1a4. Therefore in G1/G3 the action
of b3 in [a4, aj ] is b3a4aja

−1
4 a−1

j b−1
3 = B1a4aja

−1
4 B−1

1 a−1
j and so

b3[a4, aj ]b
−1
3 [a4, aj ]

−1 = B1a4aja
−1
4 B−1

1 a4a
−1
j a−1

4 = [B1 , a4aja
−1
4 ]

= [a4aja
−1
4 , B1]−1 ∈ G3.

The case where i 6= 4 and j = 4 is analogue.

Let C(θ(1)) be the centralizer of θ(1) in π1(S2 × S2 −∆).

Proposition 3.3. Let θ be a lifting such that (p2 |#)(C(θ(1)) =

π1(S2, y0). Then θ(1) ∈ G and there exist u1, u2, u3, u4 elements of G
such that ujbj ∈ C(θ(1)), j = 1, 2, 3, 4. If θ(1) = xv, with v ∈ G2, x ∈ G,
then we have that [u−1

j , x−1][x−1, bj ] = 0 in G2/G3.

Proof. From the hypothesis (p2 |#)(C(θ(1))) = π1(S2, y0) follows that
p2#(θ(1)) is in the centralizer of π1(S). This implies that this element
is trivial and then θ(1) ∈ G. Also, given b̄j from the hypothesis follows
that there exists xj which is in the centralizer of θ(1) which projects to
b̄j . Therefore xj = ujbj for some uj ∈ G.

Since ujbj ∈ C(θ(1)), j = 1, 2, 3, 4 we have that

xvujbj = ujbjxv

bjxb
−1
j [bj , v] = u−1

j xuj [u
−1
j , v]

u−1
j x−1ujbjxb

−1
j = [u−1

j , v][v, bj ]

[u−1
j , x−1][x−1, bj ] = [u−1

j , v][v, bj ]
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where v ∈ G2, uj ∈ G1. Then in G2/G3 it follows from the Lemma 3.2
that

[u−1
j , x−1][x−1, bj ] = 0. (3.5)

The group G2/G3 is a Z- free module and let us consider the basis

{[a1, a2], [a1, a3], [a1, a4], [a2, a3], [a2, a4], [a3, a4]}

which we refer as the canonical basis of G2/G3.

Lemma 3.4. In G2/G3 we have:

a) [aiaj , x] = [ajai, x], where ai, aj are generators of G and x ∈ G.

b) If B = [a1, a
−1
2 ][a3, a

−1
4 ] ∈ G, then B = −[a1, a2]−[a3, a4] and its coor-

dinate in relation to the canonical basis is given by (−1, 0, 0, 0, 0,−1).

c) The element [axii , a
xj
j ] is given in the following form:

[axii , a
xj
j ] =


0 se i = j

xixj [ai, aj ] se i < j

−xixj [aj , ai] se i > j

Proof. Since [aiaj , x] = [ai, [aj , x]][aj , x][ai, x] and [ajai, x] =

[aj , [ai, x]][ai, x][aj , x], the result of item a) follows by observing that in
G2/G3 we have that [ai, [aj , x]] = 0 = [aj , [ai, x]] which is commutative.
The items b) and c) are easy.

Theorem 3.5. If there exists θ and (p2 |#)(C(θ(1)) = π1(S2, y0) then
θ(1) ∈ G2 = [G1, G1].

Proof. It follows from the exact sequence 1 → [G1, G1] → G1 →
G1/[G1, G1] → 0 that θ(1) ∈ G1 is of the form θ(1) = xv with
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x = aa1a
b
2a
c
3a
d
4 and v ∈ G2 = [G1, G1]. We are going to prove that

the exponents a = b = c = d = 0.

It follows from Proposition 3.3 that in G2/G3 we have
[u−1
j , x−1][x−1, bj ] = 0 with uj ∈ G1.

In fact this is a system with j equations and four variables x:(a, b, c, d)

and for each j four variables (ej , fj , gj , hj) corresponding to u−1
j =

a
ej
1 a

fj
2 a

gj
3 a

hj
4 .

Writing [u−1, x−1] in the canonical basis of G2/G3 and observing that
the exponents of u−1 = ae1a

f
2a
g
3a
h
4 must to appear with sub-index j (We

are omitting such sub-index) we obtain:

[u−1, x−1] = (af − be)[a1, a2] + (ag − ce)[a1, a3] + (ah− de)[a1, a4] +

(bg − cf)[a2, a3] + (bh− df)[a2, a4] + (ch− dg)[a3, a4]

Calculating [x−1, bj ] ∈ G2 with x = aa1a
b
2a
c
3a
d
4 we obtain:

x−1b1xb
−1
1 = x−1aa1(B1a2)bac3a

d
4

= a−d4 a−c3 a−b2 (B1a2)bac3a
d
4

= a−d4 a−c3 a−b2 (ab2a
−b
2 B1a

b
2 . . . a

−2
2 B1a

2
2a
−1
2 B1a2)ac3a

d
4

x−1b2xb
−1
2 = x−1(a1B

−1
1 )aab2a

c
3a
d
4

= a−d4 a−c3 a−b2 a−a1 (a1B
−1
1 )aab2a

c
3a
d
4

= a−d4 a−c3 a−b2 a−a1 (a1B
−1
1 a−1

1 a2
1B
−1
1 a−2

1 . . . aa1B
−1
1 a−a1 )×

×aa1ab2ac3ad4
x−1b3xb

−1
3 = x−1aa1a

b
2a
c
3(B1a4)d

= a−d4 (B1a4)d

= a−d4 (ad4a
−d
4 B1a

d
4 . . . a

−2
4 B1a

2
4a
−1
4 B1a4)

x−1b4xb
−1
4 = x−1aa1a

b
2(a3B

−1
1 )cad4

= a−d4 a−c3 (a3B
−1
1 )cad4

= a−d4 a−c3 (a3B
−1
1 a−1

3 a2
3B
−1
1 a−2

3 . . . ac3B
−1
1 a−c3 ac3)ad4

Therefore in relation to the canonical basis of
G2/G3 and by using Lemma 3.4 b) we obtain
(−b, 0, 0, 0, 0,−b), (a, 0, 0, 0, 0, a), (−d, 0, 0, 0, 0,−d), (c, 0, 0, 0, 0, c) as
the coordinates of [x−1, bj ] respectively for j = 1, 2, 3, 4.
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So, the system to be solved is



−be +af = b,−a, d,−c respectively for b1, b2, b3, b4
−ce +ag = 0

−de +ah = 0

−cf +bg = 0

−df +bh = 0

−dg +ch = b,−a, d,−c respectively for b1, b2, b3, b4
(3.6)

understanding that in the letters (e, f, g, h) must to appear sub-index
j, but not in the letters (a, b, c, d).

a-) d 6= 0 in the system (3.6)

a1) If b = 0 we have that L5 implies f = 0, making L1 without
solution.

a2) If b 6= 0, in the system L3 → dL1 − bL3 produces an incompati-
bility : new L3 and L5 .

b-) b 6= 0 in the system (3.6)

b1) If d = 0 we have that L6 implies c 6= 0 and h 6= 0. Then L3

implies a = 0 and from L5 we conclude that b = 0, making L1

without solution.

b2) If d 6= 0, in the system L4 → bL6 + dL4 produces an incompati-
bility: new L4 and L5.

c-) c 6= 0 in the system (3.6)

c1) If a = 0 then L1 implies that b 6= 0 and e 6= 0 and from L3

we obtain d = 0 and from L5 we have that h = 0. Therefore L6 is
impossible.

c2) If a 6= 0 the system is impossible. In the system we make L4 →
cL1 − aL4 and obtain an incompatibility: new L4 and L2.
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d-) a 6= 0 in the system (3.6)

d1) If c = 0 the system is impossible. It follows from the fact that
L6 implies d 6= 0 and g 6= 0. Also L4 implies b = 0 and L5 implies
f = 0 making L1 impossible.

d2) If c 6= 0 the system is impossible, because in the system we make
L3 → aL6− cL3 which produces an incompatibility: new L3 and L2.

From the considerations above we conclude that a = b = c = d = 0

and therefore x = 1 and θ(1) ∈ G2.

4 Main Result

Let h : S1 × S2 → S1 × S2 given by h(x, y) = (x, f(x, y)). Let us
consider l : (S1, x0) → (S2, f(x0, y0)) and g : (S2, y0) → (S2, f(x0, y0))

given by l(x) = f(x, y0) and g(y) = f(x0, y), respectively. Without loss
of generality we are assuming that g is a fixed point free map.

To prove our main result we need the following

Lemma 4.1. Let t : S2 → S2 be a continuous map and t# : π1(S2) →
π1(S2) the induced homomorphism of the map t. Suppose that t#(bi) =

αni , where bi, i = 1, 2, 3, 4 is a generator of π1(S2). If the map t can be
deformed to a fixed point free map then

∑4
1 ni|α|i = 1 where |α|i denotes

the sum of the exponents of bi in the word α.

Proof. Let ι : S1 → S2 be a map which represents the element α ∈
π1(S2). We can define t′ : S2 → S1 such that ι ◦ t′ = t. By the com-
mutativity property for fixed point we know that the Nielsen number of
t is the same as the Nielsen number of t′ ◦ ι, which is a self map of the
circle. So if t is deformable to a fixed point free map then we have that
the Nielsen number of t′ ◦ ι is trivial which is equivalent to say that the
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Lefschetz number of t′ ◦ ι is 0, which is the same to say
∑4

1 ni|α|i = 1.
So the result follows.

The main result will follows from the Proposition below.

Proposition 4.2. The fiberwise map h is deformable to a fixed point
free map over S1 if and only if l#(1) = e, where l# : π1(S1;x0) →
π1(S2; f(x0, y0)) .

Proof. Let h be a fiberwise map where h(x, y) = (x, f(x, y)). To prove
that h can be deformed fiberwise to a fixed point free map it is suffice to
show that f is homotopic to the map f

′
(x, y) = f(x0, y).

Because S1×S2 and S2 are K(π, 1) the two maps are homotopic if the
induced homomorphisms on the fundamental group are equal. Because
π1(S1×S2) = π1(S1)×π1(S2) to show that the two homomorphisms are
the same it suffices to show that these homomorphisms coincide when
restricted to each of the two subgroups π1(S1), π1(S2). By hypothesis
l#(1) = e follows that they coincide on π1(S1). By the definition of f

′

also follows that they coincide on π1(S2), and this concludes the proof of
one implication.

Reciprocally, let h be a map deformable to a fixed point free map over
S1. Then by Theorem 3.1 exist φ and θ such that the image of θ commutes
with the image of φ. From the diagrams 3.2 and 3.3, p1|# ◦ θ = l# and
p1|# ◦ φ = g#. It is known that g#(π1(S2)) is a subgroup of π1(S2)

isomorphic to one of the following groups:

1. {e}.

2. a free group of rank 2 (see [LS89]and [Zie62]).

3. π1(S)

4. Z = 〈β〉
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The first item does not occur, otherwise g is homotopic to the constant
map so it can not be deformed to a fixed point free map.

In the second and third cases, from above l#(1) commutes with all
elements of g#(π1(S)) but the centralizer of these two subgroups is trivial.
Therefore l#(1) = e.

For the last case we have that g#(π1(S)) = Z = 〈β〉 = 〈αk〉 where
α 6= 0, α has no roots and αk = β. Since l#(1) commutes with the
elements of g#(π1(S)) then l#(1) = αr. If r = 0 the proof follows. So
suppose that r 6= 0.

Writing g#(bi) = αni we have by the lemma 4.1 that if g is homotopic
to a fixed point free map then

∑4
1 ni|α|i 6= 0.

We have that p1|# ◦θ(1) = l#(1). We also have that im φ ⊂ C(θ(1)),
and p2|#(Im(φ))) = π1(S). Therefore p2|#(C(θ(1))) = π1(S) and by
theorem 3.5 follows that θ(1) ∈ G2 = [G1, G1].

So, αr = l#(1) ∈
[
p1|#(G1), p1|#(G1)

]
.

Therefore α ∈
[
p1|#(G1), p1|#(G1)

]
and then |α|i = 0 and by using

the above result we conclude that g is not homotopic to a fixed point
free map, which contradicts the initial condition on g. So the result
follows.

In fact the proof above shows that if θ(1) = e then f does not depend
of x, i.e. h is the unique fiberwise map homotopic to id × g where g :

S2 → S2 is a fixed point free map homotopic to f restricted to 1×S. So
we state the main result.

Theorem 4.3. A fiberwise map h can be deformed over S1 to a fixed
point free map if and only if h is fiberwise homotopic to id × g where
g : S2 → S2 is a fixed point free map homotopic to f restricted to 1×S2.
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5 Other surface bundles

Here let us make few comments about the fixed point question studied
in the previous sections in the case we have a more general surface bundle.
Let S → E → B be a surface bundle over a space B where S is a
closed surface of negative Euler characteristic. We can consider three
subfamilies of the family of these bundles, namely: I) let S be an arbitrary
closed surface(orientable or nonorientable) of arbitrary genus g > 1, and
E = S1 × S; II) let E = B × S be a bundle for B any connected CW
complex; III) let E be a S−bundle over S1.

The subcases I) and II) we expect that the answer of the problem
should be similar to the answer of the case studied here where S = S2.

The subcase III) is more subtle. First of all the formulation of the
problem is already more elaborate. More precisely, let us consider the
map φ : [E,E]B → [S, S] which associate to a homotopy class of a fibre
preserve map [f ] the homotopy class of the restriction f |S : S → S.
Then one would like to know first which homotopy class [g] ∈ [S, S]

which contains a fixed point free map are in the image of φ. Second, for
a class [g] in the image how many classes [f ] ∈ [E,E] we would like to
compute the pre-image of [g], i.e. φ−1[g]. For example in the case that
we solved, we have that the [g] is in the image for all maps g which are
fixed point free and the pre-image contains exactly one element.

The study and full calculation of the questions above are in progress
and should appear somewhere.
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Free A4-actions on products of spheres

Zbigniew Błaszczyk∗

Abstract

We summarize what is known about free actions of A4, the alternating group on
four letters, on products of spheres. New results are also included: in particular, we
prove that A4 acts freely on Sn × Sn × Sn if and only if n = 1, 3, 7.

1 Introduction

The following result first appeared in a 1979 paper of Oliver.

Proposition 1.1 ([15, p. 547]). Let G be a finite group. For any integer n ≥ 1, there exists an
integer k ≥ 1 such that G acts freely on (S2n−1)k.

Proof. Let G be a finite group, H ⊆ G a subgroup and X an H-space. Then the space
MapH(G, X) of all H-equivariant maps G → X, endowed with the compact-open topol-
ogy, is a G-space in the obvious way. Note that if X is a free H-space, then MapH(G, X)

is also a free H-space. Furthermore,

MapH(G, X) ≈ X[G : H],

where [G : H] denotes the index of H in G; the homeomorphism is given by the evalua-
tion on a set of representatives of cosets of H.

For any non-trivial element g ∈ G, the cyclic group 〈g〉 ⊆ G acts freely on any odd-
dimensional sphere S2n−1. Then G acts on

Mg = Map〈g〉(G, S2n−1) ≈ (S2n−1)[G : 〈g〉],

with the subgroup 〈g〉 ⊆ G acting freely. The product ∏g∈G, g 6=1 Mg with the diagonal
G-action is a free G-space. �

The downside of the construction outlined in Proposition 1.1 is that it is very inef-
ficient: the number of spheres in the resulting product is very unlikely to be minimal.
For example, for G the elementary abelian p-group of rank r, it yields an action on
(S2n−1)pr−1(pr−1), while such a group clearly acts freely on (S2n−1)r. This raises an in-
teresting problem:

Given a finite group G, determine the minimal number k = k(G) such that G acts freely on a
finite CW complex homotopy equivalent to (Sn)k for some n ≥ 1.
∗Date: September 25, 2012
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88 Free A4-actions on products of spheres

A lot of effort has been put into determining k for various classes of groups. For
example, the solution of the spherical space form problem asserts that k(G) = 1 if and
only if G has periodic cohomology (see [9]).

In [5], we investigated k for the class of simple alternating groups, i.e., with A4 ex-
cluded; the main result is that k(Ad) > d − 1 for many values of d ≥ 5. Our goal
for this article is twofolds. Firstly, we want to summarize what is known about and
completely understand k(A4), building on previous insights provided by Oliver [15]
and Plakhta [16]. This is achieved in Section 3, and the main results there are that
A4 cannot act freely on any finite-dimensional CW complex homotopy equivalent to
Sn × Sn (Proposition 3.2), and thatA4 acts freely on Sn× Sn× Sn if and only if n = 1, 3, 7
(Theorem 3.4). From this point of view, this article can be seen as complementary to [5].

Secondly, in Section 4, we explain how A4 can act freely on Sm × Sn if m 6= n. Then
we look at those pairs (m, n) for which there exists a free A4-action on Sm × Sn.

Apart from that, Section 5 is dedicated to free actions of the symmetric group on
three letters S3. This is intended mainly for the sake of completeness, but the methods
presented therein also generalize the the class of dihedral groups.

Notation. All considered actions are topological, i.e., by homeomorphisms. A ‘closed
manifold’ is taken to mean a compact and connected manifold without boundary.

2 Preliminaries

Results of Subsections 2.1 and 2.2 are indispensable to the whole Section 3. Subsection
2.3 is relevant only to Example 3.5.

2.1 Integral representations of Z3

Write GL(n,Z) for the general linear group of degree n over the integers.

Lemma 2.1. (1) Up to conjugation, there exists precisely one subgroup of order 3 in GL(2,Z):
〈[

0 −1
1 −1

]〉
.

(2) Up to conjugation, there exist two subgroups of order 3 in GL(3,Z):
〈


0 −1 0
1 −1 0
0 0 1



〉

,

〈


0 0 1
1 0 0
0 1 0



〉

.

Lemma 2.1 is a consequence of the general theory of integral representations of cyclic
groups of prime order (see [8, §74]), but can also be derived by elementary calculations.

2.2 Adem’s results

Recall that if a group G acts on a space X, then the cohomology groups of X assume the
structure of a G-module. We will need the following result due to Adem, which relates
the nature of the G-action on X and the G-module structure on Hn(X;Z) in the case when
G is a cyclic group of prime order and X is a product of n-dimensional spheres.

2
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Theorem 2.2 ([1, Corollary 4.8]). Let k, n be positive integers, p an odd prime. If Zp acts
freely on a finite-dimensional CW complex X such that the cohomology rings H∗(X;Z) and
H∗
(
(Sn)k;Z

)
are isomorphic, then Hn(X;Z) splits off a trivial direct summand as a Zp-module.

We will also make use of the following basic observation, again due to Adem.

Proposition 2.3 ([1, Proposition 2.1]). Let n 6= 1, 3, 7. If f : (Sn)k → (Sn)k is a map such
that f ∗ : Hn((Sn)k;Z

)
→ Hn((Sn)k;Z

)
is an automorphism, then the modulo 2 reduction of f ∗

is a permutation matrix in the usual basis.

2.3 Borel manifolds

Recall that a closed manifold M is aspherical if the higher homotopy groups of M vanish,
i.e., if πi(M) = 0 for i ≥ 2, or, equivalently, if the universal cover of M is contractible.
It is classically known that aspherical manifolds are classified up to homotopy by their
fundamental groups: two aspherical manifolds are homotopy equivalent if and only if
they have isomorphic fundamental groups.

On the geometric level, we have Borel manifolds: a closed manifold M is called a Borel
manifold if every closed manifold homotopy equivalent to M is automatically homeomor-
phic to M. Crucially for us, examples of Borel manifolds include compact solvmanifolds
(see [4, Chapter III, Section 4]); in particular, products of circles.

Proposition 2.4. Let M be an n-dimensional aspherical Borel manifold. A finite group G acts
freely on M if and only if there exists a group extension

1→ π1(M)→ π1(N)→ G→ 1,

where N is a closed n-dimensional aspherical manifold.

Proof. Suppose a finite group G acts freely on M. The orbit space M/G is well-known to
be a closed n-dimensional manifold. Inspection of the long exact sequence of homotopy
groups of the covering M → M/G reveals that M/G is aspherical and that π1(M/G) fits
into the extension 1→ π1(M)→ π1(M/G)→ G→ 1.

Conversely, consider a group extension

1→ π1(M)→ π1(N)→ G→ 1.

Let M̃ be the covering space of N corresponding to the subgroup π1(M) ⊆ π1(N). Then
G ∼= π1(N)/π1(M) acts freely on M̃. Since M̃ is a closed aspherical manifold with
π1(M̃) ∼= π1(M), we have that M̃ is homotopy equivalent to M. But M is a Borel manifold
by hypothesis, so M̃ and M are homeomorphic, and the conclusion follows. �

Remark 2.5. The famous Borel conjecture states that every closed, aspherical manifold is
a Borel manifold. (See [10] for more details.)

3 Free A4-actions on (Sn)k

Recall the following fundamental result due to Oliver:
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90 Free A4-actions on products of spheres

Theorem 3.1 ([15, Theorem 1]). Let k, n be positive integers. If the alternating group A4 acts
freely on a finite-dimensional CW complex X such that the cohomology rings H∗(X;Z2) and
H∗
(
(Sn)k;Z2

)
are isomorphic, then the action induced on Hn(X;Z2) is non-trivial.

Oliver combined Theorem 3.1 and the Lefschetz Fixed Point Theorem to prove thatA4

cannot act freely on any finite CW complex X such that the cohomology rings H∗(X;Z)
and H∗(Sn × Sn;Z) are isomorphic ([15, Theorem 2]). We can improve this statement in
the following manner:

Proposition 3.2 ([5, Corollary 3.2]). The alternating group A4 cannot act freely on any finite-
dimensional CW complex X such that the cohomology rings H∗(X;Z) and H∗(Sn × Sn;Z) are
isomorphic, where n is any positive integer.

Proof. Suppose that A4 acts freely on X as above. In view of Theorem 3.1, Hn(X;Z) is a
non-trivialA4-module. ButA4 is generated by elements of order 3, so Hn(X;Z) ∼= Z⊕Z
is also a non-trivial Z3-module for some subgroup Z3 ⊆ A4. By Lemma 2.1, the Z3-
module structure on Hn(X;Z) comes from

[
0 −1
1 −1

]
,

hence it does not split off a trivial direct summand. This contradicts Theorem 2.2. �

Remark 3.3. The finite-dimensionality hypothesis of Proposition 3.2 cannot be dropped:
the product EA4 × (Sn)k (k, n arbitrary) provides an example of an infinite-dimensional,
freeA4-space homotopy equivalent to (Sn)k. (Here EA4 stands for the universal cover of
the classifying space of A4.)

Theorem 3.4. The alternating group A4 acts freely on Sn × Sn × Sn if and only if n = 1, 3, 7.

Proof. (⇐) As a preliminary remark, recall that A4 can be described twofolds: either by
the presentation 〈

a, b
∣∣ a2 = b3 = (ab)3 = 1

〉
,

or by the extension
0→ Z2 ⊕Z2 → A4

ε−→ Z3 → 0.

We will make use of both.
Let F2 = 〈a, b〉 be the free group on two generators. Define an F2-action on Sn × Sn by

setting {
a(x, y) = (−x, y)

b(x, y) = (y, y−1x−1)
for x, y ∈ Sn.

For n = 1 or 3, it is straightforward to verify that this action is trivial while restricted to
the normal closure of a2, b3 and (ab)3, and thus induces an A4-action on Sn × Sn, with
the subgroup Z2 ⊕ Z2 =

〈
a, bab2〉 ⊆ A4 acting freely. The same statement is true for

n = 7: the octonions form an alternative algebra, hence even though their multiplica-
tion is not associative in general, it is associative on any two-generated subalgebra ([19,
Appendix A, Theorem 4.16]).

4
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Now take any free action of Z3 on Sn (for example the one generated by the rotation
x 7→ e2π i/3x, x ∈ Sn) and extend it to an action of A4 by means of the epimorphism ε.
One easily checks that the product of these two actions gives rise to a free A4-action on
Sn × Sn × Sn.

This construction should be attributed to Plakhta (cf. [16, Example 1]).
(⇒) Suppose that A4 acts freely on Sn × Sn × Sn. In view of Theorem 3.1, H =

Hn(Sn × Sn × Sn;Z) is a non-trivial A4-module. The only non-trivial normal subgroup
of A4 is Z2 ⊕ Z2, hence H is also a non-trivial Z3-module for any subgroup Z3 ⊆ A4.
Since the Z3-module structure on H comes from a free Z3-action, H splits off a trivial
direct summand by Theorem 2.2. Consequently, by Lemma 2.1, there exists a basis of H
in which its Z3-module structure is given by




0 −1 0
1 −1 0
0 0 1


 .

Now express the Z3-module structure onH by a matrix in the usual basis. After reducing
modulo 2, the resulting matrix will be conjugate to




0 1 0
1 1 0
0 0 1


 ;

as such, it cannot be a permutation matrix. It now follows from Proposition 2.3 that
n = 1, 3, 7. �

Proposition 3.2 together with Theorem 3.4 show that k(A4) = 3.

Example 3.5. Let us describe another way of seeing that A4 acts freely on S1 × S1 × S1.
In view of Proposition 2.4, it suffices to produce a group extension

0→ Z⊕Z⊕Z→ π1(N)→ A4 → 1,

where N is a closed 3-dimensional aspherical manifold.
Think of S1 as the additive group of real numbers modulo 1. Let N be the torus bun-

dle over S1 given by the mapping torus of the homeomorphism h : S1 × S1 → S1 × S1,
h(t1, t2) = (−t2, t1 − t2) for any t1, t2 ∈ S1. (N is the manifold (1.5) of [13].) It is well-
known that N is a closed 3-dimensional manifold, and its asphericity follows from the
long exact sequence of homotopy groups of the corresponding fiber bundle. Further-
more,

π1(N) ∼= (Z⊕Z)oh∗ Z ∼=
〈

a, b, c
∣∣ [a, b] = 1, cac−1 = b, cbc−1 = a−1b−1〉.

Let Z ⊆ π1(N) be the subgroup generated by a2, b2 and c3. Since c3 commutes with both
a and b, it is straightforward to see that Z is a normal subgroup isomorphic to Z⊕Z⊕Z,
and that the quotient π1(N)/Z is isomorphic to A4.

This approach makes it clear that the orbit space S1 × S1 × S1/A4 of the arising A4-
action is homeomorphic to N.

5



92 Free A4-actions on products of spheres

Remark 3.6. After passing the threshold, there is much more flexibility: A4 acts freely on
(S2n−1)4 for any integer n ≥ 1. To see this, define an F2-action on Sn × Sn × Sn by setting

{
a(x, y, z) = (−x, y,−z)

b(x, y, z) = (y, z, x)
for x, y, z ∈ Sn

and proceed as in the proof of Theorem 3.4.
Note that there is no point in considering free A4-action on products of even-dimen-

sional spheres: if a finite group G acts freely on X = S2n1 × S2n2 × · · · × S2nk , then G is
a 2-group because of the equality 2k = χ(X) = |G| · χ(X/G). Here χ denotes the Euler
characteristic.

The reader interested in free actions of arbitrary alternating groups on products of
equidimensional spheres is invited to consult [5].

4 Free A4-actions on Sm × Sn

The requirement of equidimensionality of spheres in the product is actually crucial for
Proposition 3.2 to hold.

Example 4.1 ([15, p. 543]). We will show that A4 acts freely on S2 × S3. Write SO(n) for
the special orthogonal group of degree n. Consider the twisted product SO(3) ×S1 S3,
with S1 ∼= SO(2) acting as a subgroup on both SO(3) and S3. This, as usual, is a fiber
bundle over SO(3)/SO(2) ≈ S2, with fiber S3 and structure group S1.

Observe that the S1-action on S3 is contained in the group action of S3, and conse-
quently SO(3)×S1 S3 can be thought of as a principal S3-bundle. Since

π2(BS3) ∼= π1(S3) = 0,

the bundle is trivial, thus SO(3)×S1 S3 ≈ S2 × S3. The conclusion follows from the fact
that A4 is a subgroup of SO(3).

It would be interesting to determine all pairs (m, n) for which there exists a free A4-
action on Sm × Sn. Let us summarize what is known in this direction:

• By Proposition 3.2, m 6= n.

• It follows from the discussion included in Remark 3.6 that m or n has to be odd.

• We will prove in Proposition 4.3 that A4 cannot act freely on S1 × Sn for any n ≥ 1.

As for the existence results:

• As explained in Example 4.1, A4 acts freely on S2 × S3.

• Using the notion of fixity of a group, Adem–Davis–Ünlü proved that A4 acts freely
on S2n−1 × S4n−5 for any n ≥ 3 (see [2, Theorem 3.1]).

In order to prove that A4 cannot act freely on S1 × Sn for any n ≥ 1, we need the
following basic lemma.

6
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Lemma 4.2 ([12, Lemma 2.7]). Let 0 → A′ → A κ−→ A′′ → 0 be a central extension of
groups. If A′ is a torsionfree abelian group and A′′ is a torsion abelian group, then A is an abelian
group.

Proof. Let a, b ∈ A. Clearly, κ(a)n = 0 for some n > 0 and, consequently, an ∈ A′. Thus
[an, b] = [a, b]n = 1. But [a, b] ∈ A′, which is torsionfree, so the conslusion follows. �

Proposition 4.3. The alternating group A4 cannot act freely on S1 × Sn for any n ≥ 1.

Proof. In view of Proposition 3.2, we can assume without loss of generality that n ≥ 2. If
A4 acted freely on S1 × Sn, then by the theory of covering spaces, Γ = π1(S1 × Sn/A4)

would act properly discontinuously on Sn ×R. By [7, Lemma 4.2], a necessary condition
for this to be possible is periodicity of Farrell cohomology of Γ . This in turn is equiv-
alent to Γ having elementary abelian subgroups of rank at most 1 (see [6, Chapter X,
Theorem 6.7]). We will show, however, that Γ contains Z2 ⊕Z2 as a subgroup.

Consider the following commutative diagram which arises from the long exact se-
quence of homotopy groups of the covering S1 × Sn → S1 × Sn/A4:

0 0

Z3

OO

Z3

OO

0 // Z // Γ

OO

// A4

OO

// 1

0 // Z // Γ ′

OO

// Z2 ⊕Z2

OO

// 0

0

OO

0

OO

The top horizontal extension is central, hence the same is true for the bottom one. By
Lemma 4.2, Γ ′ is abelian, and therefore it suffices to find two elements of order 2 in Γ ′ to
conclude the proof. In order to do so, choose a copy of Z2 ⊆ Z2 ⊕Z2 to obtain:

0 0

Z2

OO

Z2

OO

0 // Z // Γ ′

OO

// Z2 ⊕Z2

OO

// 1

0 // Z // Γ ′′

OO

// Z2

OO

// 0

0

OO

0

OO

The bottom horizontal extension is a fortiori central, hence Γ ′′ is either Z or Z⊕ Z2. If
the first possibility holds, then Γ ′ is Z or Z⊕Z2 (the only other extension of Z2 by Z, the

7



94 Free A4-actions on products of spheres

infinite dihedral group, is non-abelian). Both these choices imply that Γ is abelian, which
is impossible. Thus Γ ′′ ∼= Z⊕Z2, and consequently Γ ′ contains an element of order 2 for
every copy of Z2 ⊆ Z2 ⊕Z2. �

Remark 4.4. (1) The above argument works equally well if A4 is replaced with any
finite nonabelian group which contains Z2 ⊕ Z2 as a normal subgroup and does
admit an epimorphism onto Z2.

(2) See [11, Corollary 2.3] for an alternative proof of Proposition 4.3 for n even.

Remark 4.5. Propositions 3.2 and 4.3 show that the action presented in Example 4.1 gives
the lowest-dimensional possibility, i.e., if A4 acts freely on Sm × Sn, then m + n ≥ 5.

It is also worth mentioning that any free A4-action on Sm × Sn has to be exotic, in the
sense that it cannot come from a product of two actions on single spheres. For ifA4 acted
freely on Sm × Sn via a product action, then by taking an appropriate number of joins of
each sphere (recall that a k-fold join of an n-sphere is a (k(n + 1)− 1)-sphere), one would
obtain a free A4-action on S(m+1)(n+1)−1 × S(m+1)(n+1)−1, which contradicts Proposition
3.2. This was first observed by Adem–Smith ([3, Theorem 5.1]).

5 Free S3-actions on Sm × Sn

Let us back up a little and look at free actions of the symmetric group S3. The story
starts with Milnor, who proved that S3 cannot act freely on any sphere ([14, Corollary 1]).
On the other hand, Swan constructed a finite, 3-dimensional CW complex homotopy
equivalent to S3 which admits a free S3-action ([17, Appendix]). Thus k(S3) = 1, but it is
nevertheless worthwhile to inquire about actions on actual products spheres. We have:

Proposition 5.1. The symmetric group S3 acts freely on Sm × Sn if and only if m or n is odd. In
particular, S3 acts freely on Sn × Sn if and only if n is odd.

Proof. Because of an Euler characteristic argument (see Remark 3.6), it suffices to con-
struct a free S3-action on Sm × Sn whenever m or n is odd.

Assume that m is odd, and think of Sm as a subspace of C(m+1)/2. We will proceed sim-
ilarly as in the proof of Theorem 3.4. Let F2 = 〈a, b〉 be the free group on two generators.
Define an F2-action on Sm by

{
ax = x̄

bx = e2π i/3x
for x ∈ Sm.

Since S3 can be presented as 〈a, b | a2 = b3 = (ab)2 = 1〉, it is straightforward to verify
that this action induces an S3-action on Sm, which clearly is free while restricted to the
subgroup Z3 = 〈b〉 ⊆ S3.

Now consider the antipodal action on Sn and extend it to an S3-action via the epimor-
phism ε coming from the extension 0→ Z3 → S3

ε−→ Z2 → 0. The product of these two
actions gives rise to a free S3-action on Sm × Sn. �

8
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Remark 5.2. For any n ≥ 1, the orbit space S1 × Sn/S3 of the action constructed in the
proof of Proposition 5.1 is homeomorphic to the connected sum RPn+1#RPn+1 of projec-
tive spaces. Indeed,

S1 × Sn/S3 ≈ (S1 × Sn/Z3)/Z2 ≈
(
(S1/Z3)× Sn)/Z2 ≈ S1 × Sn/Z2

≈ RPn+1#RPn+1,

because the last Z2-action on S1 × Sn is given by (x, y) 7→ (x̄,−y) for x ∈ S1, y ∈ Sn.
If n = 1 or 2, the same statement is true for an arbitrary free S3-action on S1 × Sn.

This is clear for n = 1; for n = 2, it is a consequence of [18, Corollary 2]. In general, if
n is even, it follows from [11, Corollary 2.3] that S1 × Sn/S3 is homotopy equivalent to
RPn+1#RPn+1 for any free S3-action.

Remark 5.3. The argument of Proposition 5.1 can be applied, mutatis mutandis, to produce
a free action of any dihedral group on Sm × Sn provided m or n is odd.

In general, k(Ad) ≤ k(Sd) ≤ 2k(Ad) + 1 for any d ≥ 1. The second inequality follows
from the “coinduction” presented in the proof of Proposition 1.1 and the “piecewise”
method of building actions, as given in the proofs of Theorem 3.4 and Proposition 5.1.
Apart from that, not much else can be said about the number k for the class of symmetric
groups.
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Koszul complexes and Chevalley’s
theorems for Lie algebroids

We use Koszul complexes and Chevalley-type theorems to calculate the
cohomology H (A) of a transitive Lie algebroid A under some assumptions
on the isotropy Lie algebras.

1 Introduction
How can we calculate the cohomology H (A) of a transitive Lie al-

gebroid A with the Atiyah sequence 0 −→ ggg ↪→A #A−→ TM −→ 0 ?
This is one of the fundamental questions for the topology of Lie alge-
broids [I-K-V], [M]. A classical method is to use spectral sequences. We
can use the Leray spectral sequence for the Čech–de Rham complex of
transitive Lie algebroids [K-M-1] as well as the Hochschild-Serre spectral
sequence for the pair of Lie algebras (Secggg,SecA) and the observation
that the vector bundle of the cohomology H (ggg) of the isotropy Lie alge-
bras, H (ggg)|x = H

(
ggg|x

)
, is flat, and that Ej,i2 = Hj

∇
(
M ; Hi (ggg)

)
where

∇ is the flat covariant derivative in Hi (ggg) [K-M-2], [K-M-3].
In this paper we propose an adaptation of the method of Koszul com-

plexes and Chevalley-type theorems [G-H-V, Vol. III] to the calculation
of H (A). Originally the method is based on the operation of a reduc-
tive Lie algebra in a graded differential algebra admitting an algebraic
connection. A fundamental theorem of Chevalley gives a homomorphism
from the corresponding Koszul complex which induces an isomorphism of
cohomology. Classically, this isomorphism is applied to the cohomology

c© Jan Kubarski, 2013
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of principal fibre bundles. Namely: the Chevalley theorem (for pfb’s)
says that under some assumptions, the cohomology of the total space
H (P ) of a pfb P depends uniquely on the cohomology of the base man-
ifold M and the characteristic classes (the Chern-Weil homomorphism
hP :

(∨
g∗
)
IG
−→ H (M)). It turns out that this assertion has a coun-

terpart for Lie algebroids, but in this context we cannot use the standard
operation of a Lie algebra directly. We propose some modification of this
method.

2 Lie algebroid of a principal fibre bundle,
Lie functor

2.1 Examples of Lie algebroids

2.1.1 Lie algebroid of a Lie group

The Lie algebroid of a Lie group G (the infinitesimal object of a Lie
group G) is simply its Lie algebra g = TeG = TG/G (for example,
through the right action of G on TG we obtain the "right Lie algebra of
a Lie group").

2.1.2 Lie algebroid of a principal fibre bundle

The vector space A (P ) := TP/G of cosets of the right action of
G on TP (introduced by M. Atiyah in 1955) is an infinitesimal object
of a principal fibre bundle P (M,G). It has two extra structures: a
Lie bracket in the space of global cross-sections Sec A (P ) and a linear
homomorphism #A(P ) : A (P ) −→ TM called the anchor. The Lie
bracket in Sec A (P ) is introduced via the isomorphism Sec (A (P )) ∼=
XR (P ) where XR (P ) is the space of right invariant vector fields on P with
the usual Lie bracket. The anchor is defined by #A(P ) : A (P ) −→ TM,
[v] 7−→ π∗ (v) where π : P →M is the projection of P. The anchor #A(P )

is bracket-preserving: #A(P ) ([[ξ1, ξ2]]) =
[
#A(P ) (ξ1) ,#A(P ) (ξ2)

]
, and

the Leibniz formula holds: [[ξ1, f · ξ2]] = f · [[ξ1, ξ2]] +
(
#A(P ) (ξ1)

)
(f) · ξ2.

The Lie algebroid of the trivial principal fibre bundle P = M×G is equal
to

A (P ) = TP/G = T (M ×G) /G = TM × (TG/G) = TM × g,
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with the bracket [[(X,σ) , (Y, η)]] = ([X,Y ] , X (η)− Y (σ) + [σ, η]) for
X,Y ∈ X (M) , σ, η ∈ C∞ (M, g) , and the anchor #TM×g = pr1 :
TM × g→ TM.

2.2 Pradines’ definition of a Lie algebroid

Generalizing the structure
(
A (P ) , [[·, ·]],#A(P )

)
for a pfb P (M,G)

J. Pradines gives the definition of a Lie algebroid [P]:

Definition 1. A Lie algebroid on a manifold M is a triple (A, [[·, ·]],#A)
where A is a vector bundle on M , (SecA, [[·, ·]]) is an R-Lie algebra, #A :
A→ TM is a linear homomorphism of vector bundles and the following
Leibniz condition is satisfied:

[[ξ, f · η]] = f · [[ξ, η]] + γL (ξ) (f) · η, f ∈ C∞ (M) , ξ, η ∈ SecA.

The anchor is bracket-preserving, #A◦[[ξ, η]] = [#A ◦ ξ,#A ◦ η].
The image of the anchor, Im #A ⊂ TM , is an integrable non-constant-

rank (in general) distribution whose leaves form a Stefan foliation of M .
If the anchor #A is of constant rank then the Lie algebroid A is called
regular and Im #A forms a regular foliation on M . The Lie algebroid
is called transitive if #A is an epimorphism. A transitive Lie algebroid
is called integrable if it is isomorphic to the Lie algebroid of a principal
fibre bundle.

We deal here only with transitive Lie algebroids.
For a transitive Lie algebroid A we have the Atiyah sequence

0 −→ ggg ↪→A #A−→ TM −→ 0.

The vector bundle ggg is a Lie algebra bundle, called the adjoint of A; in
particular, all the isotropy Lie algebras ggg|x are isomorphic.

Example 2. (1) A single Lie algebra g is a Lie algebroid over a one–point
set and with the zero anchor.

(2) The tangent bundle TM of a manifold M is a Lie algebroid on M
with idTM as anchor and with the usual Lie bracket of vector fields.

(3) Trivial Lie algebroid: TM × g with the projection pr1 as anchor
and with the bracket given by

[[ (X,σ) , (Y, η) ]] = ([X,Y ] , X (η)− Y (σ) + [σ, η]) ,



100 Koszul complexes and Chevalley’s theorems for Lie algebroids

X,Y ∈ X (M) , σ, η ∈ C∞ (M ; g), is a transitive Lie algebroid, called
trivial. (Each transitive Lie algebroid L over a contractible manifold is
isomorphic to the trivial one).

(4) The Lie algebroid A(P ) = TP/G of a G-principal fibre bundle
P = P (M,G).

(5) The Lie algebroid A (f) of a vector bundle f: With a vector bundle
f we associate a transitive Lie algebroid A (f) (isomorphic to the Lie
algebroid of the principal fibre bundle of all frames of f, A (f) = A (L f))
whose space of global cross-sections Sec A (f) is equal to the space of all
covariant differential operators for f. The Lie algebra bundle adjoint to
A (f) is equal to End (f) , so the Atiyah sequence reads

0 −→ End (f) −→ A (f) −→ TM → 0.

Example 3 (Other examples). (6) The Lie algebroid A(M,F) of a
transversally complete foliation (M,F) of a connected Hausdorff para-
compact manifold M , in particular:

(6’) The Lie algebroid A(G;H) of a nonclosed Lie subgroup H of G:
It is the Lie algebroid of the TC-foliation FG,H = {aH; a ∈ G} of left
cosets of a nonclosed Lie subgroup H in a Lie group G. These include
nonintegrable Lie algebroids.

(7) Poisson manifolds yield nontransitive Lie algebroids.

Definition 4. By a homomorphism of Lie algebroids F :
(A, [[·, ·]],#A) −→ (A′, [[·, ·]],#A′) on a manifold M we mean a lin-
ear homomorphism F : A → A′ of vector bundles commuting with the
anchors:

A
F−→ A′

↓ #A ↓ #A′

TM = TM

and such that F is a homomorphism of the Lie algebras of global cross-
sections:

F ([[ξ1, ξ2]]) = [[Fξ1, F ξ2]], ξi ∈ SecA.

A homomorphism F : A −→ B of transitive Lie algebroids induces a
linear homomorphism of the adjoint Lie algebra bundles F+ : ggg −→ ggg′

and for any x ∈M, F+
x : ggg|x −→ ggg′|x is a homomorphism of Lie algebras.
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We obtain in this way a homomorphism of Atiyah sequences,

0 0
↓ ↓
ggg

F+

−→ ggg′

↓ ↓
A

F−→ A′

↓ ↓
TM = TM
↓ ↓
0 0

2.3 Lie functor
To have a Lie functor for pfb’s we need to define a homomorphism

of Lie algebroids induced by a homomorphism of pfb’s. Let P and P ′

be two pfbs with structural Lie groups G and G′, respectively. Assume
that µ : G −→ G′ is a homomorphism of Lie groups, and F : P −→ P ′

a µ-homomorphism of pfbs, i.e. F (z · a) = F (z) · a′. Then the linear
homomorphism (the Lie algebroid differential of F )

F∗ : A (P ) −→ A (P ′) , [vz] 7−→ [dF∗z (vz)] ,

is a homomorphism of the induced Lie algebroids.

2.4 Cohomology of a Lie algebroid
To a Lie algebroid A we associate the cohomology algebra H (A) de-

fined via the DG-algebra of A-differential forms (with real coefficients)
(Ω (A) , dA) , where

Ω (A) = Sec
∧
A∗,

dA : Ω∗ (A) −→ Ω∗+1 (A)

(dAz) (ξ0, ..., ξk) =

k∑
j=0

(−1)
j

(#A ◦ ξj) (z (ξ0, ...̂..., ξk))

+
∑
i<j

(−1)
i+j

z ([[ξi, ξj ]], ξ0, ...̂ı...̂..., ξk) ,
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z ∈ Ωk (A), ξi ∈ SecA. The exterior derivative dA induces the cohomol-
ogy algebra

H (A) = H (Ω (A) , dA) .

Why the differential dA must be given by the above formula? It is easy
to obtain this formula starting with the Lie algebroid of a Lie groupoid
Φ = (Φ, (α, β) , ·.M) on a manifold M , with source α and target β and
partial multiplication · . Let i : M → Φ be the embedding of M onto the
submanifold of units, i (x) = ux, of this Lie groupoid. Then

A (Φ) = i∗ (TαΦ)

where TαΦ is the subbundle of α-vertical vectors. We see that for any
x ∈ M, the submanifold Φx = α−1 (x) of all elements starting at x (i.e.
having x as source) forms a Φxx-pfb (Φxx is the Lie isotropy group at x,
Φxx = {h ∈ Φ : αh = βh = x}) with the projection βx : Φx −→ M. We
have A (Φ)|x = Tux (Φx), the tangent space to the total space Φx at the
unit x. For all pfb’s Φx we can consider standard differential operators,
like the exterior derivative of usual differential forms (or Lie derivative
and substitution operator), and pass to the units ux and "glue". By this
procedure we obtain just dA.

Example 5. (1) If A = A (P ) = TP/G for a G-principal fibre bundle
P −→M then

Ω (A) ∼= ΩR (P ) ↪→ Ω (P ) ,

ΩR (P ) are G-right invariant differential forms on P and

H (A) ∼= H
(
ΩR (P )

) i−→ HdR (P ) .

The homomorphism i is an isomorphism if G is compact and connected.
(2) If A = A (M ;F) −→ W is the Lie algebroid of a TC-foliation F

on M (W is the so called basic manifold of the foliation F), then [K3,
Th. 6.2]

Ω (A) ∼= Ωb (M ;F) ,

Ωb (M ;F) is the algebra of F-basic differential forms, therefore H (A) ∼=
Hb (M ;F) is the algebra of basic cohomology.

Below, we will propose a calculation of H (A) using the old technique
of Koszul complexes and the so-called Chevalley theorems known for prin-
cipal fibre bundles with structural Lie groups with reductive Lie algebras.
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These Chevalley theorems (for pfb’s) say that under some assumptions,
the cohomology of the total space H (P ) of a pfb P depends uniquely
on the cohomology of the base manifold M and the characteristic classes
(the Chern-Weil homomorphism hP :

(∨
g∗
)
IG
−→ H (M)). It turns

out that this assertion has a counterpart for Lie algebroids.

3 Koszul complexes and Chevalley’s theorem
in the framework of Lie algebroids

3.1 Representations of Lie algebroids and invariant
cross-sections

Consider an arbitrary transitive Lie algebroid A on a manifoldM with
the Atiyah sequence 0 −→ ggg −→ A

#A−→ TM −→ 0 and a vector bundle f
on M.

Definition 6. By a representation of A on f we mean a homomorphism
of Lie algebroids

T : A −→ A (f) .

Look at the induced homomorphism of Atiyah sequences:

0 0
↓ ↓
ggg

T+

−→ End (f)
↓ ↓
A

T−→ A (f)
↓ ↓
TM = TM
↓ ↓
0 0

At each point x we get a representation of the isotropy Lie algebra ggg|x
on the vector space f|x,

T+
x : ggg|x −→ End

(
f|x
)
.

For a cross-section ξ ∈ SecA its image Tξ ∈ Sec A (f) determines a
covariant differential operator

LTξ : Sec f −→ Sec f.
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Example 7. (The representation of a Lie algebroid induced by a repre-
sentation of a pfb) Let G be any Lie group and µ : G −→ GL (V ) be
any representation of G on a vector space V . If F : P −→ L f is a µ-
homomorphism of pfb’s (called a µ-representation of P on f) then its Lie
algebroid’s differential F∗ : A (P ) −→ A (f) is a representation of A (P )
on f.

Definition 8. A cross-section ν ∈ Sec f is called T -invariant (or T -
parallel) if it belongs to the kernel of LTξ for each ξ, i.e.

LTξ (ν) = 0 for all ξ ∈ SecA.

The space of all T -invariant cross-sections is denoted by (Sec f)IT . If
ν ∈ Sec f is invariant then its value νx at x is invariant with respect to
T+
|x : ggg|x → End

(
f|x
)
, i.e.

νx ∈
(
f|x
)
I
T

+
x

.

One can prove that for each transitive Lie algebroid A and each rep-
resentation T : A −→ A (f) the following theorem holds.

Theorem 9. If ν1 and ν2 are T -invariant cross-sections of f and they
are equal at some point x0 ∈ M, ν1 (x0) = ν2 (x0), then they are equal
globally, ν1 = ν2 (M is assumed to be connected), see [M], [K2].

Therefore, the evaluation map

(Sec f)IT −→
(
f|x
)
I
T

+
x

, ν 7−→ ν (x) ,

is a monomorphism. Denote its image by(
f̃|x

)
I
T

+
x

;

it contains all invariant vectors u ∈
(
f|x
)
I
T

+
x

which can be extended to

globally defined invariant cross-sections, i.e.

(Sec f)IT
∼=
(
f̃|x

)
I
T

+
x

⊂
(
f|x
)
I
T

+
x

.

Moreover, each invariant vector u ∈
(
f|x
)
Io(T+

x ) can be extended to a

locally defined (on some neighbourhood of x) invariant cross-section of
the vector bundle f.



Jan Kubarski 105

There is a wider class of Lie algebroids (integrable and nonintegrable)
and representations where each invariant vector u ∈

(
f|x
)
I
T

+
x

can be

extended to globally defined invariant cross-sections.

Theorem 10 ([K1]). Let P be a connected G-principal fibre bundle (G
can be disconnected) and let F : P −→ L f be any µ-representation of P
on f where µ : G −→ GL (V ) is a representation of G on V. Denote by
µ∗ : g −→End (V ) the differential of µ (it is a representation of the Lie
algebra g of G on V ). Then for the induced representation F∗ : A (P ) −→
A (f) of the Lie algebroid A (P ) on f we have

(Sec f)IF∗
∼= VI(µ) ⊂ VI(µ∗)

∼=
(
f|x
)
I
F

+
∗x

.

If additionally G is connected then each invariant vector v ∈
(
f|x
)
I
F

+
∗x

(with respect to the representation F+
∗|x) can be extended to a globally

defined F∗-invariant cross-section of f and

(Sec f)IF∗
∼= VI(µ) = VI(µ∗)

∼=
(
f|x
)
I
F

+
∗x

.

If G is not connected then there may be invariant vectors which some-
times extend to global cross-sections and sometimes not (the Pfaffian is
a typical example).

A representation T : A −→ A (f) extends to representations on the
associated vector bundles such as the dual bundle f∗, the exterior and

symmetric powers
∧

f∗,
∨l

f∗ and their tensor products
∧

f∗ ⊗
∨l

f∗.

3.2 Weil algebra for Lie algebroids [K1]
A fundamental example of a representation is the adjoint representa-

tion of A on the adjoint Lie algebra bundle ggg defined by

adA : A −→ A (ggg) ,

adA (ξ) : Secggg −→ Secggg, ν 7−→ [[ξ, ν]].

Clearly the induced representation at an arbitrary point x,
(
ad+
A

)
|x,

is the adjoint representation of the Lie algebra ggg|x,(
ad+
A

)
|x = adggg|x : ggg|x −→ End

(
ggg|x

)
.
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The adjoint representation adA induces representations on the associated

vector bundles
∧
ggg∗,

∨l
ggg∗ (the skew symmetric and symmetric powers

of the dual bundle ggg∗) and on

(Wggg)
k,2l

:=
∧
ggg∗ ⊗

∨l
ggg∗,

denoted also by adA. Put

(Wggg)
k,2l

= Sec (Wggg)
k,2l

,

Wggg=
⊕

k,l
Sec (Wggg)

k,2l
.

For a point x ∈M we take the anticommutative (bi)graded tensor prod-
uct of anticommutative graded algebras, i.e. the Weil algebra of the space
ggg|x,

Wggg|x =
∧
ggg∗|x
⊗∨

ggg∗|x,

Wggg|x =
⊕

k.l

(
Wggg|x

)k,2l
,
(
Wggg|x

)k,2l
=
∧k

ggg∗|x
⊗∨l

ggg∗|x.

The module Wggg is a bigraded algebra with multiplication defined
pointwise, called the Weil algebra of the Lie algebroid A.

In the space Wggg|x =
∧
ggg∗|x

⊗∨
ggg∗|x (as for an arbitrary Lie alge-

bra) there exist three standard operators: the substitution operator, the
differential, and the adjoint representation, here denoted by

(ιx)ν , δWx , (θx)ν , ν ∈ ggg|x.

It is easy to see that the adjoint representation θk,2lx : ggg|x →

End
(
Wggg|x

)k,2l
is induced by the adjoint representation adA of the Lie

algebroid A on (Wggg)
k,2l

=
∧k

ggg∗
⊗∨l

ggg∗, k, l ≥ 0, at a point x.
We have:
(a) (ιν)x is an antiderivation of degree −1 defined by

(ιν)x (Φ⊗ Γ) = (ιν)x Φ⊗ Γ,

Φ ∈
∧
ggg∗|x, Γ ∈

∨
ggg∗|x,
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(b) δWx
is an antiderivation of degree +1 defined by

δWx
(h∗ ⊗ 1) = 1⊗ h∗ + δggg|xh

∗ ⊗ 1,

where h∗ ∈ ggg∗|x, δggg|x is the Chevalley-Eilenberg differential

δWx
(1⊗ h∗) ∈ (Wggg)

1,2
= ggg∗ ⊗ ggg∗,

such that
(ιν)x (δWx

(1⊗ h∗)) = (θx)ν h
∗.

The operators (ιx)ν , δWx
, (θx)ν , x ∈ M, together give operators on

smooth cross-sections

ιν , δW , θν :Wggg −→Wggg, ν ∈ Secggg.

The cross-section Θ ∈ Wggg is called horizontal if ινΘ = 0 for all
ν ∈ Secggg. Denote by

(Wggg)ι

the space of horizontal elements.

Lemma 11. The space (Wggg)ι of horizontal elements is a subalgebra of
the Weil algebra Wggg and contains only symmetric tensors:

(Wggg)ι =
⊕

l
Sec

∨l
ggg∗.

Denote the space of global cross-sections of the vector bundle

(Wggg)
k,2l

=
∧k

ggg∗
⊗∨l

ggg∗

invariant with respect to the adjoint representation of A on (Wggg)
k,2l (for

brevity) by
(Wggg)

k,2l
Io ⊂ (Wggg)

k,2l

and put
(Wggg)Io =

⊕
k,l

(Wggg)
k,2l
Io ⊂ Wggg.

Proposition 12. (Wggg)Io is a subalgebra of the Weil algebra Wggg. De-
note by (Wggg)Io,ι the subalgebra of invariant and horizontal elements of
the Weil algebra Wggg. The operator δW : Wggg −→ Wggg maps invariant
elements of Wggg into invariant ones defining an antiderivation

δW,Io : (Wggg)Io −→ (Wggg)Io ,

and
δW,Io | (Wggg)Io,ι = 0.
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3.3 Connections and the Chern-Weil homomorphism
of Lie algebroids

Definition 13. By a connection in a (transitive) Lie algebroid A we
mean a splitting ∇ : TM −→ A of the Atiyah sequence,

0 −→ ggg −→ A −→
←−
∇

TM → 0.

If A = A (P ) is the Lie algebroid of a G-principal fibre bundle
P (M,G) then connections in A (P ) correspond 1-1 to usual connections
in P.

Fix an arbitrary connection ∇ in A and consider:
a) the connection form ω : A −→ ggg, i.e. the 1-form on A with values

in ggg (ω|ggg = Id and kerω = Im∇),

ω ∈ Ω1 (A;ggg) ,

b) the curvature form of ∇,

Ω ∈ Ω2 (A;ggg) ,

defined by
Ω (ξ1, ξ2) = ω[[Hξ1, Hξ2]], ξ1, ξ2 ∈ SecA,

where H = Id− ω : A −→ A is the horizontal projection,
c) the identification Ω (A) = Ω

(
M ;
∧
ggg∗
)
.

For each point x ∈ M the mappings ω|x : A|x −→ ggg|x and Ω|x :∧2
A|x −→ ggg|x determine linear mappings

χω,x : ggg∗|x −→ A∗|x ⊂
∧
A∗|x, h∗ 7−→ h∗ ◦ ω|x,

and
χΩ,x : ggg∗|x −→

∧2
A∗|x ⊂

∧
A∗|x, h∗ 7−→ h∗ ◦ Ω|x.

By the universal properties of the exterior algebra
∧
ggg∗|x and the sym-

metric algebra
∨
ggg∗|x we obtain the existence and uniqueness of homo-

morphisms of algebras of degree 0, extending the above ones,

χ∧ω,x :
∧
ggg∗|x −→

∧
A∗|x,

χ∨Ω,x :
∨
ggg∗|x −→

∧ev
A∗|x
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(such that 1 7−→ 1). The above morphisms define a homomorphism of
algebras

χW,x : Wggg|x =
∧
ggg∗|x
⊗∨

ggg∗|x −→
∧
A∗|x,

χW,x (Φx ⊗ Γx) = χ∧ω,x (Φx) ∧ χ∨Ω,x (Γx) .

Passing to smooth cross-sections we obtain homomorphisms of algebras

χ∧ω : Sec
∧
ggg∗ −→ Ω (A) ,

χ∨Ω :
⊕l

Sec
∨l

ggg∗ −→ Ωev (A) ,

and

χW :Wggg→Ω (A)

χW (Φ⊗ Γ) = χ∧ω (Φ) ∧ χ∨Ω (Γ) .

Following [G-H-V, Vol. III, p. 341], χW is called the classifying homo-
morphism corresponding to the connection ∇.

One can prove that for Γ ∈ Sec
∨l

ggg∗,

χ∨Ω (Γ) =
1

k!
〈Γ,Ω ∨ · · · ∨ Ω︸ ︷︷ ︸

l times

〉

(the notation Ω∨· · ·∨Ω comes from [G-H-V, Vol. II], it is the usual skew
multiplication of differential forms whose values are multiplied according

to the multilinear symmetric mapping ∨ : ggg × · · · × ggg −→
∨l

ggg).

Theorem 14. (a) The classifying homomorphism χW commutes with
the substitution operators ιν , ν ∈ Secggg:

ιν (χWΘ) = χW (ινΘ) .

(b) The homomorphism χW,Io : (Wggg)Io −→ Ω (A), the restriction of
χW to the invariant elements, commutes with the differentials δW,Io and
dA:

dA (χW,IoΘ) = χW,Io (δW,IoΘ) .

As a simple consequence we obtain the Chern-Weil homomor-
phism of the Lie algebroid A. Consider the restriction χW,Io,ι of
χW : Wggg −→ Ω (A) to the horizontal invariant elements. Since
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δW,Io | (Wggg)Io,ι = 0 we see that all differential forms in ImχW,Io,ι are
closed and horizontal:

χW,Io,ι : (Wggg)Io,ι → Zι (A) ;

on the other hand, (Wggg)ι =
⊕

l
Sec

∨l
ggg∗, therefore

(Wggg)Io,ι =
⊕

l

(
Sec

∨l
ggg∗
)
Io

and Ω (M)
f∼= Ωι (A) (via the anchor f (Ψ)x (v1, ..., vk) =

(Ψ)x (#v1, ...,#vk)) and

χW,Io,ι : (Wggg)Io,ι −→ Zι (A)

‖ ‖

hA :
⊕

l

(
Sec

∨l
ggg∗
)
Io
−→ Z (M) −→ H (M)

3.4 Koszul complexes and Chevalley’s theorem in the
framework of Lie algebroids

We now apply the technique of Koszul complexes and Chevalley’s
theorem [G-H-V, Vol. III] to Lie algebroids. We recall that the adjoint

representation adA of A on (Wggg)
k,2l

=
∧k

ggg∗
⊗∨l

ggg∗ determines at each

point x the adjoint representation θk,2lx : ggg|x −→ End
(
Wggg|x

)k,2l
, which

together determine the representation on the Weil algebra θx : ggg|x −→
End

(
Wggg|x

)
. Denote by

(
W̃ggg|x

)
Iθx

the subspace of
(
Wggg|x

)
Iθx

consist-

ing of all vectors whose homogeneous parts can be extended to globally

defined cross-sections of (Wggg)
k,2l

=
∧k

ggg∗
⊗∨l

ggg∗ invariant with respect
to the adjoint representation of the Lie algebroid A,

(Wggg)Io
∼=
(
W̃ggg|x

)
Iθx

⊂
(
Wggg|x

)
Iθx

.

We assume the following (rather strong) assumptions:

(A1) the isotropy Lie algebras ggg|x are reductive,
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(A2) each homogeneous invariant element

Θx ∈
(
Wggg|x

)k,2l
Iθx

=

(∧k
ggg∗|x
⊗∨l

ggg∗|x

)
Iθx

can be extended to a globally defined invariant cross-section of the

vector bundle
∧k

ggg∗
⊗∨l

ggg∗, i.e.

(Wggg)Io
∼=
(
W̃ggg|x

)
Iθx

=
(
Wggg|x

)
Iθx

.

(In particular, the cohomology vector bundle H (ggg) , H (ggg)x =

H
(
ggg|x

)
, is trivial).

Now we return to an arbitrarily chosen connection ∇ in the Lie alge-
broid A, 0 −→ ggg −→ A −→

←−
∇

TM −→ 0, and take χW : Wggg −→ Ω (A),

the classifying homomorphism corresponding to the connection ∇, and
its restriction to the invariant elements,

χW,Io : (Wggg)Io
∼=
(
W̃ggg|x

)
Iθx

=
(
Wggg|x

)
Iθx

−→ Ω (A) .

Now we use the assumed reductivity of the isotropy Lie algebras ggg|x. Let

Px ⊂
(∧

ggg∗|x

)
Iθx

be the graded primitive subspace. We recall that homogeneous primitive
elements have odd degree (which implies that Φ ∧ Φ = 0 when Φ ∈ Px),
therefore the inclusion Px ⊂

(∧
ggg∗|x

)
Iθx

extends to a homomorphism of

algebras
κx :

∧
Px −→

(∧
ggg∗|x

)
Iθx

.

The Hopf-Samelson theorem [G-H-V, Vol. III, 5.18, Theorem III] says
that if ggg|x is reductive then κx is an isomorphism of graded algebras.

Further
τx : Px −→

(∨+
ggg∗|x

)
Iθx

denotes a fixed transgression in
(
Wggg|x

)
Iθx

, i.e. a linear mapping such

that
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(1) τx is homogeneous of degree +1, τx : P 2r−1
x −→

(∨
ggg∗|x

)2r

Iθx

=(∨r
ggg∗|x

)
Iθx

,

(2) for each Φ ∈ Px there exists Ω ∈W+
(
ggg|x

)
Iθx

such that

δWx
Ω = 1⊗ τxΦ and Ω− Φ⊗ 1 ∈

(∧
ggg∗|x ⊗

∨j≥1
ggg∗|x

)
Iθx

.

It turns out that we can demand that Ω depends linearly on Φ, and Φ
and Ω are of the same degree, i.e. that there exists a linear mapping

αx : Px −→W+
(
ggg|x

)
Iθx

,

homogeneous of degree 0, such that
(*) δWx

(αxΦ) = 1⊗ τx (Φ) ,

(**) αx (Φ)− Φ⊗ 1 ∈
(∧

ggg∗|x ⊗
∨j≥1

ggg∗|x

)
Iθx

.

In the following we fix such a mapping αx. Now we can define a Koszul
complex for the Lie algebroid. To this end we recall the homomorphism

χW,Io,ι :=
(∨

ggg∗|x

)
Iθx

∼=
⊕

l

(
Sec

∨l
ggg∗
)
Io
−→ Zι (A) ∼= Z (M)

(Z (M) = closed differential forms on M),

(after passing to cohomology, this yields the Chern-Weil homomorphism

of A). Composing it with the transgression τx : Px −→
(∨+

ggg∗|x

)
Iθx

we

obtain
τA : Px −→

(∨
ggg∗|x

)
Iθx

−→ Z (M) ⊂ Ω (M) .

Definition 15. In the skew tensor product of the graded algebras

Ω (M)⊗
(∧

ggg∗|x

)
Iθx

= Ω (M)⊗
∧
Px

we introduce the operator

∇A : Ω (M)⊗
∧
Px → Ω (M)⊗

∧
Px

uniquely determined by the conditions:
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(1) ∇A (z ⊗ 1) = d (z)⊗ 1, /d the de Rham differential
(2) ∇A (z ⊗ (Φ0 ∧ ... ∧ Φp)) = dz ⊗ (Φ0 ∧ ... ∧ Φp) +

(−1)
q
∑p

i=0
(−1)

i
τA (Φi) ∧ z ⊗

(
Φ0 ∧ ...̂i... ∧ Φp

)
, z ∈ Ωq (M) ,

Φi ∈ Px. In particular ∇A (z ⊗ Φ) = dz ⊗ Φ + (−1)
q
τA (Φ) ∧ z ⊗ 1 and

∇A (1⊗ Φ) = τA (Φ)⊗ 1.

Lemma 16. The operator ∇A is an antiderivation of square 0, homoge-
neous of degree +1.

Definition 17. The pair
(

Ω (M)⊗
∧
Px,∇A

)
is called the Koszul com-

plex of the Lie algebroid A.

We see that the Koszul complex for a Lie algebroid depends only on
the base manifold and the Chern-Weil homomorphism of A.

Now we define a Chevalley homomorphism. Take the restriction of the
classifying homomorphism χW :Wggg −→ Ω (A) to the invariant tensors,

χW,Io : (Wggg)Io
∼=
(
W̃ggg|x

)
Iθx

=
(
Wggg|x

)
Iθx

−→ Ω (A) .

Composing it with the mapping αx : Px →W+
(
ggg|x

)
Iθx

⊂
(
Wggg|x

)
Iθx

,

Px
αx−→W+

(
ggg|x

)
Iθx

⊂
(
Wggg|x

)
Iθx

∼= (Wggg)Io
χW,Io−→ Ω (A, )

we obtain a linear mapping homogeneous of degree 0,

ϑA : Px −→ Ω (A) .

Hence, since Ω (A) is anticommutative and P kx = 0 for even k, ϑA extends
to a homomorphism of graded algebras

ϑ∧A :
∧
Px −→ Ω (A) .

Finally, we extend ϑ∧A :
∧
Px −→ Ω (A) to a homomorphism of graded

algebras
ϑA : Ω (M)⊗

∧
Px −→ Ω (A)

by setting
ϑA (z ⊗ Φ) = #∗A (z) ∧ ϑ∧A (Φ)

(#∗A (z) is the pull back, via the anchor #A, of the differential form
z ∈ Ω (M) to a horizontal one on the Lie algebroid A).
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Definition 18. The homomorphism ϑA : Ω (M) ⊗
∧
Px −→ Ω (A) is

called the Chevalley homomorphism of A associated with the connection
∇ and the linear map αx.

Theorem 19 (The fundamental theorem). (A) The Chevalley homo-
morphism ϑA is a homomorphism of graded differential algebras

ϑA :
(

Ω (M)⊗
∧
Px,∇A

)
−→ (Ω (A) , dA) .

(B) Under the assumptions (A1) and (A2), i.e. that the isotropy Lie
algebras ggg|x are reductive, and

(
W̃ggg|x

)
Iθx

=
(
Wggg|x

)
Iθx

, the induced

homomorphism in cohomology

ϑ#
A : H

(
Ω (M)⊗

∧
Px,∇A

)
−→ H (A)

is an isomorphism of graded algebras.

Proof. (A) It is sufficient to check the equality dA ◦ ϑA = ϑA ◦ ∇A on
simple tensors z ⊗ 1 and 1⊗ Φ (Φ ∈ Px) only. We have

dA ◦ ϑA (z ⊗ 1) = dA (#∗Az) = #∗A (dz) = ϑA (dz ⊗ 1) = ϑA ◦ ∇A (z ⊗ 1) ,

and

dA ◦ ϑA (1⊗ Φ) = dA (ϑ∧A (Φ)) = dA (χW,Io (αx (Φ)))

Th (14)
= χW,Io (δW,Io (αx (Φ))) = χW,Io (δWx

(αx (Φ)))

(*)
= χW,Io (1⊗ τx (Φ)) = χW,Io (τx (Φ)) = #∗A (τAΦ)

= ϑA (τAΦ⊗ 1) = ϑA ◦ ∇A (1⊗ Φ) .

(B) The proof is analogous to that in the classical case for principal
fibre bundles [G-H-V, Vol. III, 9.3-4, p. 359]: we use some spectral
sequences and the comparison theorem for the first terms (the mapping
induced on the first terms is an isomorphism).

Step 1. Filtrations: For a given Lie algebroid A with the Atiyah
sequence 0 −→ ggg −→ A −→ TM −→ 0 we consider the pair of real
(infinite dimensional) Lie algebras (Γ (A) ,Γ (ggg)) of global cross-sections
of A and ggg.
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Following [H-S], [K-M-2], we introduce the Hochschild-Serre filtration
in Ω (A)j in Ω (A) as follows:

Ω (A)j =

{[
Ω (A) for j ≤ 0,⊕
k≥j Ω (A)

k
j for j > 0.

]
where Ω (A)

k
j consists of all those k-differential forms z ∈ Ωk (A) for

which
z (ξ1, ..., ξk) = 0

whenever k − j + 1 of the arguments ξi ∈ Γ (A) belong to Γ (ggg) . In this
way we obtain a graded filtered differential space and its spectral sequence(
Ej,iA,s, dA,s

)
.

Analogously, following [G-H-V, Vol. III] we introduce in the space
Ω (M)⊗

∧
Px the filtration(

Ω (M)⊗
∧
Px

)
j

=
⊕

k≥j
Ω (M)

k ⊗
∧
Px.

We obtain a graded filtered differential space and its spectral sequence(
Ej,is , ds

)
.

Step 2. We show that the Chevalley homomorphism ϑA is filtration
preserving. Firstly we notice that ϑA (z ⊗ 1) = #∗A (z) and ϑA (1⊗ Φ)−
χW,Io (Φ⊗ 1) ∈ Ω (A)1 . The first statement is obvious. To prove the
second, it is sufficient to consider the case Φ ∈ Px. According to (**)
above it follows that

ϑA (1⊗ Φ)− χW,Io (Φ⊗ 1) = χW,Io (αxΦ)− χW,Io (Φ⊗ 1) (1)
= χW,Io (αxΦ− Φ⊗ 1) ∈ Ω (A)1 .

By definition, ϑA
[
Ω (M)

k ⊗ 1
]
⊂ Ω (A)k . Since

(
Ω (M)⊗

∧
Px

)
j
is the

ideal generated by
⊕

k≥j Ω (M)
k ⊗ 1, and since Ω (A)j is an ideal, this

implies that ϑA preserves filtrations.
Step 3. We show that the mapping of the first terms of the spectral

sequences,
ϑA,1 : E1 −→ EA,1,

is an isomorphism. In view of the Comparison Theorem the induced
homomorphism in cohomology ϑ#

A : H
(

Ω (M)⊗
∧
Px,∇A

)
−→ H (A)

is an isomorphism.
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We start by calculating the differential operators d0 in E0 and dA,0 in
EA,0. It is immediate from the definitions that

∇A : Ω (M)
k ⊗

∧l
Px −→

(
Ω (M)⊗

∧
Px

)
k+1

, k, l ≥ 0.

It follows that d0 = 0. On the other hand, recall from [K-M-2, Conclusion
5.2] that EjA,0 = Ωj

(
M ;
∧
ggg∗
)
and that the differential dA,0 becomes the

Chevalley-Eilenberg differential of values at each point.
Now, we show that ϑA,0 : E0 −→ EA,0 simply comes from the inclu-

sion map

j : Ω (M)⊗
∧
Px = Ω (M)⊗

(∧
ggg∗|x

)
Iθx

−→ Ω
(
M ;
∧
ggg∗
)

and its values are dA,0-closed. In fact, j is homogeneous of bidegree zero.
Thus we need only show that

ϑA − j : Ωk (M)⊗
∧
Px −→ Ω (A)k+1 .

But j (z ⊗ Φ) = #∗A ∧ χW,Io (Φ⊗ 1) , and so property (1) yields, for z ∈
Ωk (M),

(ϑA − j) (z ⊗ Φ) = #∗Az ∧ (ϑA (1⊗ Φ)− χW,Io (Φ⊗ 1)) ∈ Ω (A)k+1 .

To prove Step 3 we need only show that (ϑA,0)
#

: H (E0, d0) −→
H (EA,0, dA,0) is an isomorphism. In view of the formulae for d0 and dA,0
it remains to show that the inclusion map j induces an isomorphism

j# : Ω (M)⊗
∧
Px = Ω (M)⊗

(∧
ggg∗|x

)
Iθx

−→
(

Ω
(
M ;
∧
ggg∗
)
, dA,0

)
.

Since the Lie algebras ggg|x are reductive (assumption (A1)), by the
structural theorem for reductive Lie algebras [G-H-V, Vol. III, s.
5.12, Theorem 1] we have

(∧
ggg∗|x

)
Iθx

= H
(
ggg|x

)
. Therefore, the iso-

morphism property of j# follows immediately from assumption (A2):(
Ω
(
M ;
∧
ggg∗
)
, dA,0

)
= Ω (M ; H (ggg)) = Ω

(
M ; H

(
ggg|x

))
. The proof of

the fundamental theorem is now complete.

Problem 20. What can we do in the case when
(
W̃ggg|x

)
Iθx

(
(
Wggg|x

)
Iθx

to calculate H (A) ? [The simplest examples of this case come from con-
nected pfb’s with disconnected structural Lie groups].
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The Lefschetz Theorem for
multivalued maps

A subcollection of multivalued maps called s-maps is introduced. Then
to a self s-map f of a finite connected CW-complex an integer Ls(f) is
associated and an analog of the Lefschetz Fixed Point Theorem is proved.

1 Introduction

The Lefschetz Fixed Point Theorem states that if X is a sufficiently
nice space and f : X → X is a singlevalued continuous map, then it is
possible to associate to f an integer L(f) such that if L(f) 6= 0, then f
has a fixed point. The number L(f) is called the Lefschetz number of f
and is a well known and very useful homotopical invariant.

In the literature one can find many tries of generalizations of the
Lefschetz number to the case of multivalued maps. The paper [2] presents
the Lefschetz number defined for maps for which the image of any two
different points has the same finite number of elements. More general
approches regarding to acyclic and admissible maps are presented in [3].
Authors of [6] consider multivalued maps with an additional algebraic
structure called the weight of a map. They construct for such maps the
Lefschetz number using the Darbo homology functor, but that number
essentially depends on the weight as well.

The main goal of this paper is to introduce a subcollection of multival-
ued maps, called s-maps for which it is possibile to define the Lefschetz
number in a new way. In Section 2 we recall some basic information about

c© J.M. Kiszkiel, 2013
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the ordinary Lefschetz number and the Lefschetz set of admissible maps
presented in [3]. Then in Section 3 we show a categorical construction
which leads to an extension of some definitions to larger categories. We
apply such a construction to define a subcollection of multivalued maps
called s-maps and the Lefschetz number of them as well. Moreover, we
prove an analog of the Lefschetz Fixed Point Theorem for s-maps (Theo-
rem 3.9). Next in Section 4 we compare our approach with the Lefschetz
set of admissible maps. We present some examples of s-maps which are
not admissible. At the end of the section we use the categorical construc-
tion again to define s-admissible maps which generalize both admissible
and s-maps. Next we formulate the Lefschetz Fixed Point Theorem for
such maps (Theorem 4.9).

ACKNOWLEDGMENTS. I would like to thank Marek Golasiński for
many halpful conversations and useful suggestions.

2 Preliminaries
First we recall some basic information about multivalued maps. More

details one can find in [3].
Let X, Y be two topological spaces and assume that for every point

x ∈ X a nonempty compact subset ϕ(x) ⊆ Y is given. In this case, we
say that ϕ is a multivalued map from X to Y and we write ϕ : X ( Y .

Let ϕ : X ( Y be a multivalued map and A ⊆ X, then the image of
A under ϕ is the set

ϕ(A) =
⋃
x∈A

ϕ(x).

Let ϕ : X ( Y be a multivalued map and B ⊆ Y , then the large
preimage of B under ϕ is the set

ϕ−1(B) = {x ∈ X | ϕ(x) ∩B 6= ∅}.

If ϕ : X ( Y and ψ : Y ( Z are two multivalued maps, then for any
C ⊆ Z we have

(ψ ◦ ϕ)−1(C) = ϕ−1(ψ−1(C)).

A multivalued map ϕ : X ( Y is called upper semicontinuous (u.s.c.),
provided for every closed B ⊆ Y the set ϕ−1(B) is closed inX. If ϕ : X (
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Y and ψ : Y ( Z are u.s.c. maps, then the composition ψ ◦ ϕ : X ( Z
is also u.s.c..

Remark 2.1. Let f : X → Y be a singlevalued continuous map onto Y .
Then its inverse can be considered as a multivalued map f inv : Y ( X
defined by f inv(y) = f−1(y) for y ∈ Y . If f is closed, then f inv is u.s.c..
Later we write f−1 instead of f inv.

Now we recall the Lefschetz Fixed Point Theorem for singlevalued
maps. For details check [1], [4] and [5]. Denote by C the collection
of all finite connected CW-complexes. Let X ∈ C and f : X → X be
a singlevalued continuous map. Recall that we have a well defined in-
teger L(f) =

∑
k∈Z

(−1)ktr(fk), called the Lefschetz number of f , where

fk : Hk(X,Q) → Hk(X,Q) are maps induced by f on the rational ho-
mology groups and tr(fk) denotes the trace of the homomorphism fk.

Remark 2.2. When we work in C there is no difference which homol-
ogy functor we use, but if X is an arbitrary topological space, then by
Hk(X,Q) we mean the k-th Čech rational homology group of X.

Notice that the Lefschetz number has the following very useful prop-
erties, which are a simple consequences of analogous properties of the
trace:

Proposition 2.3. Let X, Y ∈ C, f : X → Y and g : Y → X be two
singlevalued continuous maps, then L(fg) = L(gf).

Corollary 2.4. Let X, Y ∈ C, g : X → Y be a homeomorphism and
f : X → X be a singlevalued continuous map, then L(f) = L(gfg−1).

There is also a property which connects the Lefschetz number of a
map with the Lefschetz number of its prime iteration:

Theorem 2.5 (The mod p Theorem [4]). Let X ∈ C, f : X → X be a
contiuous map and p be a prime. Then L(fp) ≡ L(f) mod p.
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The most famouse and important application of the Lefschetz number
is:

Theorem 2.6 (Lefschetz Fixed Point Theorem [5]). Let X ∈ C and
f : X → X be a singlevalued continuous map. If L(f) 6= 0, then f has a
fixed point.

To recall the construction of the Lefschetz number of multivalued
admissible maps, we need some definitions. All results presented below
are stated in [3].

A space X is called acyclic, when:
(i) Hk(X,Q) = 0 for all k ≥ 1;
(ii) H0(X,Q) = Q.

A singlevalued continuous map f : X → Y is called proper, provided
for every compact K ⊆ Y the set f−1(K) is compact.

A singlevalued continuous map f : X → Y is called a Vietoris map,
provided the following conditions hold:
(i) f : X → Y is proper;
(ii) the set f−1(y) is acyclic for all y ∈ f(X).

Vietoris maps have the following important property:

Theorem 2.7 (Vietoris [3]). If X, Y ∈ C and f : X → Y is a Vietoris
map, then the induced homomorphism fk : Hk(X,Q) → Hk(Y,Q) is an
isomorphism for all k ≥ 0.

A multivalued map ϕ : X ( Y is called admissible, provided there
exist a space Z and two continuous maps p : Z → X and q : Z → Y such
that:
(i) p is a Vietoris map;
(ii) q(p−1(x)) ⊆ ϕ(x) for all x ∈ X.
We write (p, q) ⊆ ϕ when maps p and q are as above.

The Lefschetz set of an admissible map ϕ : X ( X is defined by:

La(ϕ) =

{∑
k∈Z

(−1)ktr(qkp−1k ) | (p, q) ⊆ ϕ

}
.
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Remark 2.8. Let X,Y ∈ C and ϕ : X ( Y be an admissible map. It is
easy to see, that if (p, q) ⊆ ϕ, then qp−1 : X ( Y is u.s.c. and the set
qp−1(x) is connected for all x ∈ X.

The most important application of the Lefschetz set is:

Theorem 2.9 (Lefschetz Fixed Point Theorem for admissible maps [3]).
Let X ∈ C and ϕ : X ( X be an admissible map. If La(ϕ) 6= {0}, then
ϕ has a fixed point.

Remark 2.10. In [3] a collection of spaces for which it is possible to
consider admissible maps is larger than C. Moreover, in [7] there is con-
sidered a broader class of maps for which it is possible to define the
Lefschetz set.

3 The Lefschetz number of s-maps
In this section we introduce a subcollection of multivalued maps called

s-maps and investigate their properties. First, we show a very usefull
categorical construction which helps us in defining s-maps.

Definition 3.1. Let D be a category and C its subcategory, not necessary
full. Define a category (D, C) as follows:
(i) object of (D, C) are quadruples (X,A, r, s), where X ∈ D, A ∈ C,
r : X → A and s : A→ X are morphisms in D such that rs = idA;
(ii) Mor(D,C)((X,A, r, s), (Y,B, t, q)) = {(ϕ, f) ∈ D × C | ϕ = qfr, f ∈
MorC(A,B)};
(iii) a composition law in (D, C) is induced from the composition laws in
D and C;
(iv) id(X,A,r,s) = (sr, idA).

Observe that the composition of morphisms in the category (D, C)
is well defined because if (ϕ, f) ∈ Mor(D,C)((X,A, r, s), (Y,B, t, q)) and
(ψ, g) ∈ Mor(D,C)((Y,B, t, q), (Z,C, l,m)), then ψϕ = lgtqfr = lgfr,
because tq = idY , so (ψϕ, gf) ∈ Mor(D,C)((X,A, r, s), (Z,C, l,m)).

Notice that if ϕ = qfr, then f = tϕs, so f is uniquely determinded
by ϕ (when suitable r, s, t and q are choosen).
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Now let D be a category of topological spaces and multivalued u.s.c.
maps and C its subcategory of finite connected CW-complexes and sin-
glevalued continuous maps. Consider the category (D, C) for such D and
C.

Definition 3.2. Let X ∈ D and ϕ : X ( X be a multivalued u.s.c. map.
The map ϕ is called an s-map if there exist:
(i) A ∈ C;
(ii) a singlevalued continuous map fϕ : A→ A;
(iii) a singlevalued continuous surjection r : X → A;
(iv) a multivalued u.s.c. map s : A( X;
such that:
(a) (X,A, r, s) ∈ (D, C);
(b) (ϕ, fϕ) ∈ Mor(D,C)((X,A, r, s), (X,A, r, s)).

If ϕ : X ( X is an s-map and fϕ is a map like in the above definition,
then we say that the morphism (ϕ, fϕ) represents ϕ in (D, C).

If X ∈ C and ϕ : X → X is a singlevalued continuous map, then
clearly ϕ is an s-map, because it is enough to take A = X, fϕ = ϕ
and r = s = idX . This factorization is called standart. Of course for a
singlevalued continuous map there can exsist factorizations different to
the standart one.

Example 3.3. A map ϕ : [0, 2]→ [0, 2] given by ϕ(x) = 0 for all x ∈ [0, 2]
is singlevalued, so we have the standard factorization. On the other
hand, we can choose a different morphism in (D, C) which represet ϕ, for
example r : [0, 2]→ [0, 1] is given by

r(x) =

{
x for x ∈ [0, 1];
1 for x ∈ (1, 2];

s : [0, 1] ( [0, 2] is the inverse of r, so s(x) = r−1(x) for all x ∈ [0, 1] and
fϕ : [0, 1]→ [0, 1] is defined by fϕ(x) = 0 for all x ∈ [0, 1].

For selfmorphisms in category C we have a well defined Lefschetz
number. We can extend this definition to the category (D, C) by taking
L(ϕ, fϕ) = L(fϕ). Our goal is to show that if an s-map ϕ : X ( X is
represented by two different morphisms (ϕ, fϕ) and (ϕ, gϕ), then L(fϕ) =
L(gϕ). To show that we need first to prove some lemmas:
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Lemma 3.4. If an s-map ϕ : X → X is represented by pairs (ϕ, fϕ) and
(ϕ, gϕ) are such that ϕ = sfϕr and ϕ = tgϕq for suitable s, r and q, t,
then:
(i) fϕr = rtgϕq;
(ii) qsfϕ = gϕqs;
(iii) gϕqsrt = gϕ;
(iv) rtgϕ is a singlevalued continuous map;
(v) qsfϕ is a singlevalued continuous map;
(vi) gϕqs is a singlevalued continuous map.

Proof. (i), (ii) and (iii) are easy consequences of equalities sfϕr = tgϕq,
qt = id and rs = id. Let now prove (iv). Using (i) we have that rtgϕq is
a singlevalued continuous map. Moreover, q is a singlevalued continuous
surjection, so (iv) follows. Property (v) is analogous to (iv) and (vi) is a
consequence of (ii) and (v).

Lemma 3.5. If an s-map ϕ : X → X is represented in (D, C) by pairs
(ϕ, fϕ) and (ϕ, gϕ), then L(fnϕ ) = L(gnϕ) for n ≥ 2.

Proof. Let ϕ = sfϕr and ϕ = tgϕq, then using Proposition 2.3 and
Lemma 3.4 we obtain:
L(fnϕ ) = L((rtgϕqs)n) = L(rtgnϕqs) = L(rtgn−1ϕ gϕqs) =

L(gϕqsrtgn−1ϕ ) = L(gnϕ).

As an easy consequence of Theorem 2.5 and Lemma 3.5 we get:

Proposition 3.6. If an s-map ϕ : X → X is represented in (D, C) by
pairs (ϕ, fϕ) and (ϕ, gϕ), then L(fϕ) = L(gϕ).

Remark 3.7. Example 3.3 shows that we cannot prove the above propo-
sition directly as Lemma 3.5 because the composition sr : X ( X does
not have to be singlevalued.

Now we are in a position to define the Lefschetz number of s-maps:
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Definition 3.8. Let ϕ : X ( X be an s-map. The Lefschetz number
of ϕ is a number Ls(ϕ) = L(fϕ), where (ϕ, fϕ) represents ϕ in (D, C).
According to Proposition 3.6 this number is well defined.

If f : X → X is a singlevalued continuous map then Ls(f) = L(f).
To show this it is enough to take the standart factorization.

Now we prove an analog of the Lefschetz Fixed Point Theorem for
s-maps:

Theorem 3.9 (Lefschetz Fixed Point Theorem). Let ϕ : X ( X be an
s-map and Ls(ϕ) 6= 0, then ϕ has a fixed point.

Proof. The map ϕ is an s-map. Let suitable A, fϕ, r and s be choosen.
Acoording to the definition Ls(ϕ) = L(fϕ), where ϕ = sfϕr. The map
fϕ : A → A is singlevalued continuous and A ∈ C, so the ordinary Lef-
schetz Fixed Point Theorem implies that fϕ has a fixed point a = r(x)
for some x ∈ X. Let z ∈ s(r(x)), then ϕ(z) = ϕ(x), because r(z) = r(x).
Therefore, we have z ∈ sr(x) = sfϕr(x) = ϕ(x) = ϕ(z), so z is a fixed
point of ϕ.

The easiest way to show that ϕ : X ( X is an s-map, it is to find an
equivalence relation R on X such that A = X/R and r : X → A is the
canonical projection. If ϕ : X ( X, then

R = {(x, y) ∈ X ×X | ϕ(x) = ϕ(y)

and
ϕ−1(x) = ϕ−1(y) 6= ∅} ∪ {(x, x) | x ∈ X}

is called a canonical relation for ϕ. If we use the canonical relation, then
we write XR istead of A.

Now we present some examples of s-maps and find their Lefschetz
numbers:

Example 3.10. Let Sn be the n-sphere and ϕ : Sn → Sn be such that
ϕ(x) = Sn for all x ∈ Sn. Let R be the canonical relation for ϕ. Then
XR = {∗}, where {∗} denotes the one point space. We have ϕ = sfϕr,
where r : Sn → {∗} is given by r(x) = {∗} for every x ∈ Sn, s : {∗}( Sn

is defined by s(∗) = Sn and fϕ = id{∗}. Therefore ϕ is an s-map and
Ls(ϕ) = L(fϕ) = L(id{∗}) = 1.
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Example 3.11. Let X ∈ C and f : S1 → S1 be a continuous singlevalued
map. Define ϕ : S1 ×X ( S1 ×X by ϕ(b, x) = {f(b)} ×X. Let R be
the canonical relation for ϕ. Then XR = S1, r : S1 × X → S1 is given
by r(b, x) = b for all (b, x) ∈ S1 × X, s : S1 ( S1 × X is given by
s(b) = {b} ×X and fϕ = f . We have Ls(ϕ) = L(f).

4 Comparision of the Lefschetz numbers
In this section we compare the Lefschetz number of s-maps with the

Lefschetz set of admissible maps. One may expect that there is some co-
incidence between those two conceptions, but as we see in some examples
they give different results. This leads to a definition of s-admissible maps
which generalizes both admissible and s-maps. We start this section with
analysing some examples.

Our first example shows a situation when La(ϕ) 6= {Ls(ϕ)}:

Example 4.1. Let ϕ : Sn ( Sn be such that ϕ(x) = Sn for all x ∈ Sn.
We have shown in Example 3.10, that this is an s-map and Ls(ϕ) = 1.
On the other hand, the map ϕ is admissible and La(ϕ) = Z, because
(idSn , f) ⊂ ϕ for all singlevalued continuous maps f : S1 → S1.

In the previous example we have {Ls(ϕ)} ⊆ La(ϕ), but that is not
true in general.

Example 4.2. Let ϕ : [0, 2] ( [0, 2] be given by:

ϕ(x) =

{
x for x ∈ (0, 2);
{0, 2} for x ∈ {0, 2}.

Then ϕ is both admissible and an s-map. We have

La(ϕ) =

{∑
k∈Z

(−1)ktr(qkp−1k ) | (p, q) ⊆ ϕ

}
= {L(id[0,2])} = {1},

because we cannot choose p and q such that qp−1 6= id[0,2] (see Remark
2.8). On the other hand, we have Ls(ϕ) = L(fϕ) = L(idS1) = 0, because
XR is homeomorphic to S1 and using Proposition 2.4 we can replace in
our calculations the map fϕ by idS1 .
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In next two examples we show s-maps which are not admissible. As
a consequence for those maps only the Lefschetz number of s-maps is
possible to define.

Example 4.3. Let ϕ : [0, 2] ( [0, 2] be given by:

ϕ(x) =

 x+ 1 for x ∈ [0, 1);
{0, 2} for x = 1;
x− 1 for x ∈ (1, 2].

This map is not admissible (see Remark 2.8). On the other hand, ϕ is
an s-map and we have Ls(ϕ) = L(fϕ) = L(idS1) = 0, because XR is
homeomorphic to S1 and using Proposition 2.4 we can think that fϕ is
a rotation by an angle π which is homotopic to the identity map on S1.

Example 4.4. Let ϕ : [0, 2]→ [0, 2] be given by:

ϕ(x) =

 −x+ 1 for x ∈ [0, 1);
{0, 2} for x = 1;
−x+ 3 for x ∈ (1, 2].

Then ϕ is not admissible, but ϕ is an s-map and we have Ls(ϕ) = L(fϕ) =
2, because we can think that fϕ : S1 → S1 and has a degree equal −1.

Remark 4.5. After studing two previous examples one can easy see that
for any integer n it is possible to find a multivalued map ϕ which is not
admissible, but is an s-map and Ls(ϕ) = n. Namely, it is enough to
take a multivalued map ϕ : [0, 2] ( [0, 2] which is not admissible and a
suitable map fϕ : S1 → S1 has a degree 1− n.

Remark 4.6. The maps from the last two examples can be considered
as the multivalued weighted maps (check [6] for a definition), but only
trivial weight is possible for those maps.

Now we formulate a definition which generalizes both admissible and
s-maps. Let D be a category of spaces and multivalued maps and C be
its subcategory of finite connected CW-complexes and admissible maps.
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Definition 4.7. Let X ∈ D and ϕ : X ( X be a multivalued map. The
map ϕ is called an s-admissible map if there exist:
(i) A ∈ C;
(ii) an admissible map βϕ : A( A;
(iii) a singlevalued continuous surjection r : X → A;
(iv) a multivalued u.s.c. map s : A( X;
such that:
(a) sβϕr(x) ⊆ ϕ(x) for all x ∈ X;
(b) (X,A, r, s) ∈ (D, C).

Let ϕ : X ( X be s-admissible. Denote by (D, C)ϕ the set of all maps
βϕ which are like in the above definition.

Definition 4.8. The Lefschetz set of s-admissible map is a set:

Ls(ϕ) =
⋃

βϕ∈(D,C)ϕ

La(βϕ).

Theorem 4.9 (Lefschetz Fixed Point Theorem). Let X ∈ C and ϕ : X (
X be an s-admissible map. If Ls(ϕ) 6= {0}, then ϕ has a fixed point.

Proof. We choose suitable s, r and βϕ such that La(βϕ) 6= {0}. Than we
use Theorem 2.9 and following the proof of Theorem 3.9 we obtain that
sβϕr has a fixed point, which is also a fixed point of ϕ.

Remark 4.10. The easiest way to show that ϕ : X ( X is s-admissible
is to find an admissible map ψ : X ( X such that ψ(x) ⊆ ϕ(x) for all
x ∈ X or an s-map η : X ( X such that η(x) ⊆ ϕ(x) for all x ∈ X.

Now we present an example of an s-admissible map which is neither
admissible nor an s-map:

Example 4.11. Let ϕ : [0, 3] ( [0, 3] be given by:

ϕ(x) =

 [−x+ 1,−x+ 2] for x ∈ [0, 1);
[0,−x+ 2] ∪ [−x+ 4, 3] for x ∈ [1, 2];
[−x+ 4,−x+ 5] for x ∈ (2, 3].

The map ϕ is not an s-map. Moreover, ϕ is not admissible, because the
graph of ϕ has two connected components and neither of them is a graph
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of a multivalued map from [0, 3] to [0, 3]. On the other hand we have an
s-map η : [0, 3] ( [0, 3] given by:

η(x) =

 −x+ 1 for x ∈ [0, 1);
{0, 3} for x = 1;
−x+ 4 for x ∈ (1, 3]

such that η(x) ⊆ ϕ(x) for all x ∈ X. Consequently ϕ is s-admissible.
We have Ls(η) = 2, so 2 ∈ Ls(ϕ). Moreover, it can be shown that
Ls(ϕ) = {2}.
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1 Introduction

Denote by map(X, Y ) (respec. map∗(X, Y )) the space of free (respec. pointed)
maps from X to Y . Whenever X is a finite CW-complex and Y is a nilpo-
tent CW-complex of finite type over Q, then [8] any path component of both
map(X, Y ) and map∗(X, Y ) are nilpotent CW-complexes of finite type over
Q and in particular, it can be rationalized in the classical sense. From the
Sullivan approach to rational homotopy theory [9], and based in the funda-
mental work of Haefliger [7], there is a standard procedure [2, 3] to obtain
Sullivan models of the path components mapf (X, Y ) and map∗f (X, Y ) of
map(X, Y ) and map∗(X, Y ) respectively, containing the map f : X → Y . In
this note, we show the advantage of this procedure and use it repeatedly to
explicitly describe the rational homotopy type of free and pointed mapping
spaces between spheres:
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Theorem 1.1. (i) For m odd and any n ≥ 1,

map(Sn, Sm) 'Q





Sm ×K(Z,m− n), if m > n.⋃
N S

m, if m = n.

Sm, if m < n.

map∗(Sn, Sm) 'Q





K(Z,m− n), if m > n.⋃
N ∗, if m = n.

∗, if m < n.

(ii) For m even and any n ≥ 1,

map(Sn, Sm) 'Q





Y, if m > n.

Sm ×K(Z, 2m− n− 1)
⋃

N S
2m−1, if m = n.

Sm ×K(Z, 2m− n− 1), if m < n < 2m− 1.⋃
N S

m, if m = 2n− 1.

Sm, if m = 2n− 1.

map∗(Sn, Sm) 'Q





K(Z,m− n)×K(Z, 2m− n− 1), if m > n.⋃
NK(Z, 2m− n− 1), if m = n.

K(Z, 2m− n− 1), if m < n < 2m− 1.⋃
N ∗, if m = 2n− 1.

∗, if m < n.

Here, 'Q means “rationally homotopy equivalent”;
⋃

denotes the disjoint
union; and Y is a rational space which sits in a fibration of the form

SmQ ×K(Q,m− n)→ Y → K(Q, 2m− n− 1).

We should mention that the above result might be known, or easily deduced
by specialists. However, to our knowledge, it has not been made explicit in
the literature. Thus, this paper reviews in a particular a useful situation, the
general procedure of obtaining the rational homotopy type of both free and
pointed mappping spaces.

Acknowledgement. The second author expresses his gratitude to Prof.
Marek Golasinski from University of Torun, from its support during the
Topology Workshop 2012, where this paper was partially written.
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2 Models of mapping spaces between spheres

In this section we prove the theorem above. We highly depend on known
facts and techniques arising from rational homotopy theory. All of them can
be found in the excellent reference [6] which is now standard on the subject.
Here, we simply present a summary of some basic facts.

For any simply connected, or more generally, nilpotent CW-complex of
finite type X, its rationalization XQ is a rational space (i.e., its homotopy
groups are rational vector spaces), together with a map X → XQ inducing
isomorphisms in rational homotopy.

On the other hand, to any space X there corresponds, in a contravariant
way, its minimal Sullivan model which is a particular Sullivan algebra (ΛV, d),
unique up to isomorphism, which algebraically models the rational homotopy
type of the space X, or equivalently, the homotopy type of its rationalization
XQ. By ΛV we mean the free commutative algebra generated by the graded
vector space V , i.e., ΛV = TV/I where TV denotes the tensor algebra over
V and I is the ideal generated by v ⊗ w − (−1)|w||v|w ⊗ v, ∀v, w ∈ V . The
differential d satisfies a certain minimality condition which, in the simply
connectid case it translates to: for any element of v ∈ V , dv is a polynomial
in ΛV with no linear term.

This correspondence yields an equivalence between the homotopy cate-
gories of 1-connected rational spaces of finite type and that of 1-connected
rational commutative differential graded algebras of finite type. Indeed, this
equivalence is the restriction to the appropriate subcategories of the classical
adjoint functors [1]

SimplSets
APL→←
〈 〉

CDGA

between the homotopy categories of commutative differential graded algebras
and simplicial sets.

One can precise, through these functors, the notion of models of non con-
nected spaces. As in [3], a model of a general space X, not necessarily con-
nected, is a Z-graded free CDGA (ΛW,d) such that its simplicial realization
〈(ΛW,d)〉 has the same homotopy tye of the Milnor simplicial approximation
of XQ, S∗(XQ).

We now introduce the Haefliger model [7] of the free and pointed map-
ping spaces map(X, Y ), map∗(X, Y ), via the functorial description of Brown-
Szczarba [2].

3
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Let B be a finite dimensional CDGA (commutative differential graded
algebra) model of the finite CW-complex X and let A = (ΛV, d) be a Sullivan
model of the nilpotent CW-complex of finite type Y .

Denote by B] = Hom(B,Q) the differential graded coalgebra, dual of B
and therefore negatively graded, and consider the Z-graded CDGA Λ(A⊗B])
with the natural differential induced by the one on A and by the dual δ of
the differential on B. Now, consider the differential ideal I ⊂ Λ(A ⊗ B])
generated by 1− 1⊗ 1] and by the elements of the form

v1v2 ⊗ β −
∑

j

(−1)|v2||β
′
j |(v1 ⊗ β′j)(v2 ⊗ β′′j ),

with v1, v2 ∈ V , β ∈ B and ∆β =
∑

j β
′
j ⊗ β′′j . Then, the composition

ρ : Λ(V ⊗B]) ↪→ Λ(A⊗B]) � Λ(A⊗B])/I

is an isomorphism of graded algebras [2, Thm.1.2]. Thus, we may consider

on Λ(V ⊗B]) the differential d̃ for which the above becomes an isomorphisms

of CDGA’s. To explicitly determine d̃ on the generator v⊗ β ∈ V ⊗B], first
compute dv ⊗ β + (−1)|v|v ⊗ δβ and then use the relations which generate
the ideal I to express dv ⊗ β as an element of Λ(V ⊗B]).

Then, it turns out [2, Thm.1.3] that
(
Λ(V⊗B]), d̃

)
is a model of map(X, Y ).

Moreover, if B]
+ denotes the subspace of B] of strictly negative elements,(

Λ(V ⊗B]
+), d̃

)
is a model of map∗(X, Y ).

For the model of the components of map(X, Y ) and/or map∗(X, Y ) we
follow the approach and notation of [3, 4]:

For any free CDGA (ΛW,d), in which W is Z-graded, and any algebra
morphism u : ΛW −→ Q consider the differential ideal Ku generated by
A1 ∪ A2 ∪ A3, being

A1 = W<0, A2 = dW 0, A3 = {α− u(α) : α ∈ W 0}.

(ΛW,d)/Ku is again a free CDGA of the form (Λ(W
1 ⊕W≥2), du) in which

W
1

is a complement in W 1 of d(W 0) modulo identifications via A1 and A3,

see [3, §4] for details. Note that, W
1

depends also on u. Moreover, if (ΛW,d)
is a model of a non-connected space X and u corresponds to a 0-simplex of

X, as remarked in [2, 4.3], (Λ(W
1⊕W≥2), du) is a Sullivan model of the path

component of X containing the fixed 0-simplex.

4
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Next, consider
(
Λ(V ⊗B]), d̃

)
the model of map(X, Y ) which we have just

recalled and let ϕ : (ΛV, d)→ B be a model of a given map f : X → Y . The
morphism ϕ clearly induces a natural augmentation which shall be denoted
also by ϕ :

(
Λ(V ⊗B]), d̃

)
→ Q. Applying the process above to this particular

case yields the Sullivan algebra

(
Λ
(
V ⊗B]

1 ⊗ (V ⊗B])≥2
)
, d̃ϕ
)

which constitutes a Sullivan model of mapf (X, Y ). In the same way,

(
Λ
(
V ⊗B]

+

1

⊗ (V ⊗B]
+)≥2

)
, d̃ϕ
)

is a Sullivan model of map∗f (X, Y ).
To prove our Theorem we will apply all of the above to the particular

case of choosing X = Sm and Y = Sn to be spheres, m,n ≥ 1. For it, recall
that, if m is an odd integer, the minimal model of Sm is the exterior algebra
on a generator of degree m with zero differential (Λxm, 0). On the other
hand, if m is even, the minimal model of Sm is (Λxm, y2m−1, d), dxm = 0,
dy2m−1 = x2m. From now on, subscripts will always denote degree.

On the other hand, for any n, a coalgebra model of Sn is B = 〈1, αn〉, in
which αn is a primitive cycle of degree −n, i.e., ∆αn = αn ⊗ 1 + 1⊗ αn.

We will now distinguish different cases:

Case 1: m odd.

A model of map(Sn, Sm) is therefore,

(Λ(xm ⊗ 1, xm ⊗ αn), 0).

To avoid excessive notation we set xm ⊗ 1 = am and xm ⊗ αn = bm−n and
rewrite the above as:

(Λ(am, bm−n), 0).

On the other hand, taking into account that the evaluation fibration

map∗(Sn, Sm)→ map(Sn, Sm)→ Sm

is modelled by

(Λam, 0)→ (Λ(am, bm−n), 0)→ (Λbm−n, 0),

a model for map∗(Sn, Sm) is simply (Λbm−n, 0).

5
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We now obtain Sullivan models for the path components and identify the
homotopy type of their realizations.

Case 1.1: free maps.

m > n:

In this case (Λ(am, bm−n), 0) is already a Sullivan model as bm−n has
positive degree. Hence the only component of map(Sn, Sn) has the rational
homotopy type of the product Sm ×K(Z,m− n) of Sm with the Eilenberg-
MacLane space of type (Z,m− n).

m = n:

In this case bm−n has degree 0 and there are a countable number of non
homotopic morphisms ϕλ : (Λ(am, bm−n), 0)→ Q, one for each λ ∈ Q, sending
bm−n to 1. Then, the procedure above give rise to a countable number of
components, just like in the integral case, each of which with Sullivan model
(Λam, 0) whose realization is just SmQ .

Observe, as in [5, Ex. 3], that in this case, since map(Sm, Sn) has in-
finitely many components, its rational homology in degree zero is infinite
dimensional. Thus, its rational cohomology, also in degree zero, has un-
countable dimension. This sharply contrasts with the rational cohomology
of its model (Λ(xm ⊗ 1, xm ⊗ αn), 0), which in degree zero has countable di-
mension. This illustrates why, in the non-connected case, a model of a space
does not preserve, in general, rational homotopy invariants.

m < n:

In this case bm−n has negative degree and therefore, it vanishes when
considering models of components. Therefore, there is only one component
with Sullivan model (Λam, 0) whose realization is again SmQ .

Case 1.2: pointed maps.

m > n:

As in this case bm−n is of positive degree there is only one component
with Sullivan model (Λbm−n, 0) whose realization is K(Q,m− n).

m = n:

As in the free case, there are a countable number of non homotopic mor-
phisms ϕλ : (Λbm−n, 0) → Q, one for each λ ∈ Q, sending bm−n to λ. Thus,

6
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when replacing bm−n by λ we obtain Q as a model for the corresponding
component and therefore, each component is rationally trivial.

m < n:

In this case bm−n has negative degree so there is only one component
which is rationally trivial.

Case 2: m even.

In this case, a model of map(Sn, Sm) is again computed via the methods
above:

(Λ(xm ⊗ 1, y2m−1 ⊗ 1, xm ⊗ αn, y2m−1 ⊗ αn), d)

To avoid excessive notation, as before, we set xm ⊗ 1 = am, y2m−1 ⊗ 1 =
c2m−1, xm ⊗ αn = bm−n, y2m−1 ⊗ αn = z2m−n−1 and rewrite this model as:

(Λ(am, c2m−1, bm−n, z2m−n−1), d),

in which the differential is given by

dam = dbm−n = 0, dc2m−1 = a2m, dz2m−n−1 = 2ambm−n.

Concerning pointed maps and taking into account that the evaluation
fibration

map∗(Sn, Sm)→ map(Sn, Sm)→ Sm

is modelled by

(Λ(am, c2m−1), d)→ (Λ(am, c2m−1, bm−n, z2m−n−1), d),→ (Λ(bm−n, z2m−n−1), 0),

a model for map∗(Sn, Sm) is simply (Λ(bm−n, z2m−n−1), 0).
Then, on components:

Case 2.1: free maps.

m > n:

In this case both bm−n, z2m−n−1 have positive degrees so the above is al-
ready a Sullivan model. Hence, there is only one component whose realization
is a space Y which fits in a fibration of the form

SmQ ×K(Q,m− n)→ Y → K(Q, 2m− n− 1).

7
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m = n:

Now z2m−n−1 has positive degree but bm−n has degree zero and there are
a countable number of non homotopic morphisms

ϕλ : (Λ(am, c2m−1, bm−n, z2m−n−1), d)→ Q,

one for each λ ∈ Q, sending bm−n to λ. This gives rise to a countable
number of components. If λ 6= 0 then the corresponding component has
Sullivan minimal model (Λc2m−1, 0) whose realization is S2m−1. On the other
hand, if λ = 0, the corresponding component has Sullivan minimal model
(Λ(am, c2m−1, z2m−n−1), d), with dz2m−n−1 = 0 whose realization is of the
rational homotopy type of Sm ×K(Z, 2m− n− 1).

m < n < 2m− 1:

Now bm−n has negative degree but z2m−n−1 has positive degree. Thus,
there is only one component with model (Λ(am, c2m−1, z2m−n−1), d), with
dz2m−n−1 = 0 whose realization is again SmQ ×K(Q, 2m− n− 1).

n = 2m− 1:

Here, bm−n has negative and z2m−n−1 has degree zero. Hence, we have
a countable number of components arising from the CDGA morphisms
ϕλ : (Λ(am, c2m−1, bm−n, z2m−n−1), d) → Q, one for each λ ∈ Q, sending
z2m−n−1 to λ. Each of them produces via the procedure above the same
Sullivan model (Λ(am, c2m−1), d) whose realization is SmQ .

n > 2m− 1:

In this case both bm−n, z2m−n−1 have negative degrees. Hence, there is
only one component with model (Λ(am, c2m−1), d) whose realization is SmQ .

Case 2.2: pointed maps.

m > n:

In this case, both bm−n, z2m−n−1 have positive degrees and the model
(Λ(bm−n, z2m−n−1), 0) is already minimal. Thus, there is one component ra-
tionally equivalent to K(Z,m− n)×K(Z, 2m− n− 1).

m = n:

Now, z2m−n−1 has positive degree but bm−n has degree zero. Thus, as in
precedent cases, it can be replaced by any rational number giving rise to a

8
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countable number of components each of which with model (Λz2m−n−1, 0),
whose realization is K(Q, 2m− n− 1).

m < n < 2m− 1:

Here, z2m−n−1 has positive degree but bm−n is of negative degree. Hence,
there is only one component with model (Λz2m−n−1, 0) whose realization is
again K(Q, 2m− n− 1).

n = 2m− 1:

In this case bm−n has negative degree and z2m−n−1 is of degree zero. Hence,
in the procedure of obtaining components, bm−n vanishes while z2m−n−1 is re-
placed by any rational number giving rise to a countable number of rationally
trivial components.

n > 2m− 1:

Finally, both bm−n, z2m−n−1 have negative degrees and there is only one
component which is rationally trivial.

Summarizing all of the above finishes the proof of our theorem.
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We show that a homeomorphism of the plane R2 with an invariant Cantor
set C, on which the homeomorphism acts as an adding machine, possesses
periodic points arbitrarily close to C. The existence of periodic points
near an invariant Cantor set is related to a shape theory question whether
a solenoid invariant in a flow defined on R3 must be contained in a larger
movable invariant compactum.

1 Introduction

Let φ : X → X be a homeomorphism (Z-action) or a flow (R-action)
defined on a metric space X. A set A ⊂ X invariant under φ is Lyapunov
stable if for every neighborhood U of A there is a neighborhood V of
A such that for every p ∈ V , the forward orbit of p is contained in
U . J. Buescu and I. Stewart proved in [8] (see also [9]) that if h :
R2 → R2 is a homeomorphism with an invariant Lyapunov stable Cantor
set C, and h|C is an adding machine, then every neighborhood of C
contains a periodic orbit of h. The theorem was also proved by H. Bell
and K. Meyer in [2]. In addition, the authors construct in this paper a
specific example of a Lyapunov stable adding machine in R2 invariant
under a C1 homeomorphism h of R2 and show that the theorem does
not hold for a homeomorphism H on R3 and a Lyapunov stable adding

c© Krystyna Kuperberg, 2013
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machine invariant under H. We give a simple proof that without the
assumption of Lyapunov stability a weaker version of the theorem holds:
Every neighborhood of C contains a periodic point of h. The proof bears
a similarity to the proof of the Cartwright-Littlewood Theorem given
Morton Brown in [7]. The Cartwright-Littlewood Theorem asserts that
if planar continuum ∆ does not separate the plane R2 and is invariant
under an orientation preserving homeomorphism h : R2 → R2, then h
has a fixed point p ∈ ∆.

Much earlier E.S. Thomas considered in [18] one-dimensional
solenoids invariant in a C1 flow on a 3-manifold. A solenoid in this case
is the inverse limit of circles with bonding maps being group homomor-
phisms. If almost all bonding maps are of degree one, then the solenoid
is said to be trivial. Assuming that the flow on a non-trivial solenoid
is minimal, the Poincaré first-return map on a local cross-section of the
solenoid is an adding machine. The flow restricted to an invariant set is
minimal on this set if every orbit is dense in the set. In case of a solenoid,
this is equivalent to the fact that there are no fixed points in the solenoid,
i.e., the flow is non-singular.

A compact invariant set is isolated if in some compact neighborhood it
is the largest invariant set. The notion applies to both homeomorphisms
and flows. Thomas uses isolating blocks, considered by C. Conley and
R. W. Easton in [10] and previously by T. Ważewski in [20], in order
to establish an Alexander-Spanier cohomology exact sequence involving
the solenoid. He then shows that an invariant non-trivial solenoid in a
nonsingular flow on a 3-manifold is not isolated. M. Kulczycki proved
in [14] that under certain conditions, a planar adding machine is not
isolated.

2 Adding machine

For a sequence of integers (k1, k2, k3, . . .), each greater than one, de-
note by C(k1, k2, k3, . . .), or shortly by C, the Cantor set Π∞n=1Z/knZ.

Definition 1. An adding machine is a homeomorphism α : C→ C such
that if

α(i1, i2, i3, . . .) = (j1, j2, j3, . . .)

then
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1. if there is an m ≥ 1 such that in = kn − 1 for n < m and im <
km − 1, then jn = 0 for n < m, jm = im + 1, and jn = in for
n > m,

2. otherwise jm = 0 for all m, i.e., if im = km − 1 for m ≥ 1, then
jm = 0 for m ≥ 1.

The map α is an adding machine with base (k1, k2, k3, . . .) acting onC.
The Cantor set itself is ofter referred to as an adding machine; precisely,
an adding machine is the pair (C, α).

Definition 2. Let α be an adding machine with base (k1, k2, k3, . . .) act-
ing on C. For a finite sequence of integers i1, . . . , in, 0 ≤ ij < kj for
j ≤ n, define a cylinder of length n as the set

Ci1,...,in = {(x1, x2, . . .) |x1 = i1, . . . , xn = in}.

Note that the cylinder Ci1,...,in is invariant under αs , where s is a
multiple of the product k1 · · · kn.

3 Periodic points near a planar adding ma-
chine

Let h : R2 → R2 be a homeomorphism andC = C(k1, k2, k3, . . .) ⊂ R2

an invariant Cantor set. Assume that h|C is an adding machine with base
(k1, k2, k3, . . .). Let P be the set of periodic points of h in R2, including
the fixed points although clearly the fixed points of h are away from C.
Let Cl(P ) be the closure of P . Each of the sets P and Cl(P ) is invariant
under h.

The theorem below shows that in every neighborhood of C, there is
a periodic point of h. Stability is not assumed.

Theorem. C ∩ Cl(P ) 6= ∅.

Proof. Suppose that C∩Cl(P ) = ∅. Let U be a component of R2 \Cl(P )
intersecting C. Thus U contains a cylinder invariant under hs, some
power hs of h. If U is simply connected, then by Brouwer’s Theorem [6]
we arrive at a contradiction that there is a fixed point of the orientation
preserving homeomorphism hs ◦ hs in U , a periodic point of h outside
P . The Brouwer Translation Theorem asserts that for a fixed point free,
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orientation preserving homeomorphism of the plane no orbit of a point
is bounded, hence there are no non-empty, compact, invariant sets.

In general, let Ũ be the universal cover of U with π : Ũ → U the
covering map. There is a cylinder Ci1,...,in contained in an open, evenly
covered disk D ⊂ U . Since Ci1,...,in is invariant under hk1···kn , so is U .
Let f = hk1···kn

|U . Since h has no periodic points in U , f as well as f2,
which is an orientation preserving homeomorphism of U , have no fixed
points in U .

By composing a lift of f2 with an appropriate deck transformation,
we obtain an orientation preserving homeomorphism f̃ : Ũ → Ũ with an
invariant compactum C̃, a copy of Ci1,...,in mapped homeomorphically
by the projection π onto Ci1,...,in . Since Ũ is homeomorphic to R2, by
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cylinder

periodic points

Brouwer’s theorem, f̃ has a fixed point a. On the other hand since f2
has no fixed points, no fiber π−1(p) is invariant under f̃ . Hence a cannot
be a fixed point of f̃ .

Therefore the assumption that C ∩ Cl(P ) = ∅ is not valid. There are
periodic points of h arbitrarily close to the Cantor set C.

Remark. The above theorem does not address the periods of the pe-
riodic points that are close to the Cantor set equipped with the adding
machine with base (k1, k2, k3, . . .). The almost periodicity of the adding
machine yields natural relations of these periods to the products of num-
bers k1, k2, . . . multiplied by the number 2 in case of orientation reversing
homeomorphisms.

4 Shape theory

The notion of movability is one of the most important concepts of
shape theory. A compact subset F of the Hilbert cube Q is movable [4]
if for every neighborhood U of F there exists a neighborhood V of F
such that for every neighborhood W of F there is a deformation of V
into W within U . This property does not depend on the embedding of
F in Q and the Hilbert cube can be replaced in the definition by any
metric ANR. For the basic notions of the theory of shape the reader is
referred to [3] and K. Borsuk’s monograph [5]. The notion of movability
seems closely related to notion of Lyapunov stability and thus it is of
importance in dynamics.

Non-trivial solenoids were the first and most obvious examples of non-
movable compacta. On the other hand, the Denjoy continua [11], which
by construction are in a natural manner embedded in the surface of a
torus, are movable. A description of a C1 Denjoy set (conitnuum) is
easily accessible in [15] or [16]. Denjoy continua are completely classified
in [1] and [12]. Let D be a Denjoy continuum embedded in the surface
of a torus S1 × S1. Let π : S1 × S1 → S1 × S1 be a covering projection
with finite fibers. The set π−1(D) is Denjoy-like. The complement of a
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Denjoy continuum in S1 × S1 is connected, whereas the complement of
a Denjoy-like continuum in S1 × S1 may have several components.

Let φ : R×M →M be a non-singular flow on a 3-manifold M . Let Σ
be a solenoid in M approximated in terms of the Hausdorff distance by a
sequence of pairwise disjoint simple closed curves {Cn}∞n=1 disjoint from
the solenoid. It is easy to show that the compactum X = Σ ∪

⋃∞
n=1 Cn

is movable.

Question 1. If a solenoid Σ is invariant under φ, is Σ contained in a
larger movable compact set invariant under φ?

The next question is a slight variation of Question 1.

Question 2. If a solenoid Σ is invariant under φ and U is a neighborhood
of Σ, is Σ contained in a larger movable compact set invariant under φ
and contained in U?

Question 3. Could the larger movable invariant set in Questions 2 al-
ways consist of Σ and a sequence of invariant approximating circles?

In [17], P. Šindelářová constructed a flow on R3 with an invariant non-
movable one-dimensional continuum Ω. The continuum is not a solenoid,
but maps continuously onto a non-trivial solenoid and therefore by [19]
or [13] it is not movable. In Šindelářová’s flow, Ω is approximated by
invariant Denjoy-like continua {Dn}∞n=1 and the union Ω ∪

⋃∞
n=1Dn is

movable.

Question 4. Is every compact invariant set in flow on a 3-manifold
contained in a movable invariant set?

Question 5. If a compactum Y is invariant under a flow φ on a 3-
manifold and U is a neighborhood of Y , is Σ contained in a movable
compact set invariant under φ and contained in U?

Question 6. Would Questions 4 and 5 pose a different challenge if one
assumed that the flow φ on the non-movable invariant set were minimal?

Let D be a Cantor set in R2 invariant under an orientation preserving
homeomorphism g : R2 → R2. By Brouwer’s theorem, g has a fixed point
p ∈ R2. (It is easy to construct an example such that g|D is a Denjoy
homeomorphism and g has no periodic points other than one fixed point.)
This suggest the following:
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Question 7. Let Z be a compact invariant set in a flow on R3 such that
there exists a sequence of invariant Denjoy-like continua {Dn}∞n=1 so that
the union Z ∪

⋃∞
n=1Dn is movable. Does there exist an invariant simple

closed curve? Do there exist invariant simple closed curves arbitrarily
close to Z?

Finally let’s recall the main problem:

Question 8. Let h : R2 → R2 be a homeomorphism and let C be a
Cantor set invariant under h. If h|C is an adding machine, does there
exist a periodic orbit in every neighborhood of C?
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Marek Golasiński, Francisco Gómez Ruiz

Spheres over finite rings and their
polynomial maps

The paper [8] grew out of our attempt to describe all polynomial self-maps
of the real and complex circle as well.

Introduction. The definition of the n-sphere Sn with n ≥ 0 over
the reals can be extended to arbitrary commutative and unitary rings R
which leads to the n-sphere

Sn(R) = {(r0, . . . , rn) ∈ Rn+1; r20 + · · ·+ r2n = 1}

over R. If R is finite then it is worthwhile to compute its cardinality
](Sn(R)). More generally, if V (Fq) is an affine variety defined over a
finite field Fq, we can not only consider the number ](V (Fq)), but also
](V (Fqm)) for m ≥ 1. These can be nicely encoded by the Hasse-Weil
zeta function of V : ζ(V ;X) = exp(

∑∞
m=1

](V (Fqm ))
m Xm) ∈ Q[[X]] which

satisfies a number of fundamental properties, known as the Weil conjec-
tures, which are known to be true mainly by the work [6] of Deligne.

Like for S1, the circle S1(R) is equipped in an abelian group structure.
Further, S1(−) is a functor from commutative and unitary rings into
abelian group. In particular, for the field Q of rational numbers, points
of S1(Q) are determined by Pythagorean triples and S1(Q) is dense in
the circle S1. If R is a finite ring then S1(R) is a finite abelian group and
it is a natural problem to determine its structure.

In [9], the author considers the group structure in S1(R), with R
being a commutative and unitary ring, determines this structure in the
case when R is either a finite field or the ring Zm of integers modulo m,
and describes the group structure on conic sections.

In particular, by [9], the group S1(R) is cyclic provided R is a field or
the ring Zpk of integers modulo pk for a prime odd number p. Further, in

c© Marek Golasiński, Francisco Gómez Ruiz, 2013
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[9, p. 54] the author has stated: The case p = 2 is particularly interesting
(or nasty, depending on your point of view [oder lästig, je nachdem, wie
man es sieht]).

The aim of Section 1 is to simplify proofs of some results from [9],
present their generalizations and state in Theorem 2.5:
If p is a prime and k ≥ 1 then

S1(Zpk) ∼=


Z+
pk−1(p−1), if p ≡ 1 (mod 4);

Z+
pk−1(p+1)

, if p ≡ 3 (mod 4);

Z+
2 , if k = 1;

Z+
2 ⊕ Z+

22 ⊕ Z+
2k−2 , if k ≥ 2.

The paper [8] grew out of our attempt to describe all polynomial self-
maps of the real and complex circle as well. Then, some results from
[11, 14, 15] on spheres and their polynomial maps into spheres over any
field has been transfered. In virtue of Wood [14] (see also [5, Chapter
13]) a necessary condition for the existence of a non-constant polynomial
map Sm → Sn of spheres for m ≥ n is that 2k+1 > m ≥ n ≥ 2k for
some k ≥ 0. It was shown in [15] that from the homotopy point of view
nothing is lost by complexifying the problem of which homotopy classes
of maps of spheres contain a polynomial representative. Furthermore in
virtue of [7] any complex polynomial self-map of S2(C) yields a regular
self-map of the sphere S2 in a canonical way. Then Loday [11] using
algebraic and topological K-theory proved some results on polynomials
maps into Sn. For instance, every polynomial map from the torus Tn to
Sn is null-homotopic if n > 1. For n even those results were extended in
[3, 4] to regular and then in [5] to polynomial maps Sn1 ×· · ·×Snk → Sn
with n = n1 + · · ·+ nk odd. Certainly, polynomial maps Sm1(R)× · · · ×
Smk(R) → Tn(R) are worth to be studied from the algebraic point of
view for any field R. We made use of the abelian group structure on
the sphere S1(R) to show in [8, Corollary 2.11] that for any polynomial
self-map f : S1(R) → S1(R) there are α ∈ S1(R) and an integer n such
that f(z) = αzn for any z ∈ S1(R) provided the field R is infinite. All
polynomial maps Sm1(R) × · · · × Smk(R) → Tn(R) are listed in [8] for
any infinite field R.

Section 2 takes up the systematic study of spheres Sn(R) over a fi-
nite field R and polynomial maps Sm1(R) × · · · × Smk(R) → Sn1(R) ×
· · · × Snl(R) with m1, . . . ,mk, n1, . . . , nl ≥ 0. Theorem 3.2 shows the
cardinality ](Sn(R)) of the n-sphere Sn(R):
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If the characteristic χ(R) 6= 2 then for any number n ≥ 1 it holds:

]Sn(R) =

{
(]R)n − (]R)

n
2 η((−1)

n
2 ), if n is even;

(]R)n − (]R)
n−1
2 η((−1)

n+1
2 ) if n is odd,

where

η(1) = 1 and η(−1) =

 1, if the equation X2 + 1 = 0 has a solution
inR;

−1 otherwise
and Corollary 3.4 asserts that any such any map Sm1(R)×· · ·×Smk(R)→
Sn1(R)× · · · × Snl(R) is a polynomial one.

1. Circles over a finite ring. Let R be a commutative and
unitary ring. The set

S1(R) = {(r0, r1) ∈ R×R; r20 + r21 = 1}

is called the 1-sphere or the circle over R.
Observe that on S1(R) there is an abelian group structure de-

fined by (r0, r1) ◦ (r′0, r
′
1) = (r0r

′
0 − r1r

′
1, r0r

′
1 + r1r

′
0) for any points

(r0, r1), (r′0, r
′
1) ∈ S1(R). Writing SO(2, R) for the group of special or-

thogonal 2× 2-matrices over R, we may easily show

Remark 2.1. (1) For any commutative and unitary ring R there is an
isomorphism of groups

S1(R) ∼= SO(2, R)

determined by the assignment (r0, r1) 7→
(
r0 r1
−r1 r0

)
for (r0, r1) ∈ S1(R).

(2) If R1, R2 are commutative and unitary rings then there is an iso-
morphism of groups S1(R1 ×R2) ∼= S1(R1)× S1(R2).

Next, consider the quotient ringR[i] = R[X]/(X2+1), where i denotes
the class of X in R[X]/(X2 + 1) and write U(R) for the multiplicative
group of R. Let χ(R) denote the characteristic of R. Then, we may state:

Proposition 2.2. F̨or any unitary ring R there is a group monomor-
phism S1(R)→ U(R[i]). Further:
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(1) if χ(R) = 2 then S1(R) = {(1 + r + s, r); r, s ∈ Rwith s2 = 0}
and there is a splitting short exact sequence

0→ R+ → S1(R)→ R̃→ 1,

where R+ is the additive group of R and the group R̃ = {s ∈ R; s2 = 0}
with s1 ◦ s2 = s1 + s2 + s1s2 for s1, s2 ∈ R̃;

(2) if i ∈ R with i2 = −1 then there is an exact sequence of abelian
groups

0→ R0 → S1(R)→ U(R),

where R0 = {r ∈ R; 2r = 0};
(i) if 2 ∈ U(R) then there a group isomorphism

S1(R)
∼=→ U(R);

(ii) if χ(R) = 2 then there is a splitting short exact sequence

0→ R→ S1(R)→ R1 → 1,

where R1 = {r ∈ R; r2 = 1};
(3) if i 6∈ R then there is an exact sequence

1→ S1(R)→ U(R[i])
ρ→ U(R)

of abelian groups, where ρ(r0 + r1i) = r20 + r21 for r0 + r1i ∈ U(R[i]).
Further, if R is a finite field then U(R[i])

ρ→ U(R) is onto.

Proof. Certainly, the map ϕ : S1(R)→ U(R[i]) given by ϕ(r0, r1) =
r0 + r1i for (r0, r1) ∈ S1(R) is a group monomorphism.

(1) Let χ(R) = 2. If r, s ∈ R with s2 = 0 then (1 + r + s, r) ∈ S1(R).
Conversely, if (r0, r1) ∈ S1(R) then r0 = 1 + r1 + (1 + r0 + r1) and
(1 + r0 + r1)2 = 0. Hence, S1(R) = {(1 + r + s, r); r, s ∈ Rwith s2 = 0}.
Further, one can easily see that the map φ : R+ → S1(R) given by φ(r) =
(1+r, r) for r ∈ R is a group monomorphism. Write R̃ = {s ∈ R; s2 = 0}
and s1 ◦ s2 = s1 + s2 + s1s2 for s1, s2 ∈ R̃. Then, (R̃, ◦) is an abelian
group and the map ρ : S1(R) → R̃ given by ρ(1 + r + s, r) = s for
(1 + r + s, r) ∈ S1(R) is an epimorphism. The sequence

0→ R+ φ→ S1(R)
ρ→ R̃→ 0

is exact and the map ρ′ : R̃→ S1(R) given by ρ′(s) = (1 + s, 0) for s ∈ R̃
determines its splitting.
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(2) Write R0 = {r ∈ R; 2r = 0}. Then, the maps

α : R0 → S1(R) and ϕ : S1(R)→ U(R)

given by α(r) = (1+r, r) for r ∈ R0 and ϕ(r0, r1) = r0 +r1i for (r0, r1) ∈
S1(R) are group homomorphisms with Kerα = {0} and Imα = Kerϕ.
Notice that r ∈ U(R) with r+ r−1 = 2s for some s ∈ R implies (s,−(r−
s)i) ∈ S1(R) and ϕ(s,−(r − s)i) = r. Consequently,

Imϕ = {r ∈ U(R); r + r−1 ∈ 2R}.

(i) If 2 ∈ U(R) then R0 = {0} and r + r−1 ∈ Imϕ for r ∈ U(R).
Hence, the map

ψ : U(R)→ S1(R)

given by ψ(r) = (2−1(r−1 + r), 2−1(r−1− r)i) for r ∈ U(R) is the inverse
of the ϕ : S1(R)→ U(R) above.

(ii) If χ(R) = 2 then R0 = R, Imϕ = {r ∈ R; r2 = 1} = R1 and the
short exact sequence

0→ R+ → S1(R)→ R1 → 1

splits as an exact sequence of elementary 2-groups.
(3) Consider the group homomorphism ρ : U(R[i]) → U(R) given by

ρ(r0 + r1i) = r20 + r21 for r0 + r1i ∈ U(R[i]). Then, Kerρ = S1(R) and
consequently we get the required short exact sequence 1 → S1(R) →
U(R[i])→ U(R).

Let now R be a finite field and define the group endomorphism π :
U(R) → U(R) given by π(r) = r2 for r ∈ U(R). If χ(R) = 2 then π is
an automorphism and so U(R[i])

ρ→ U(R) is onto.
Now, suppose that χ(R) 6= 2 and write ]X for the cardinality of a

finite set X. Notice that the group endomorphism U(R) → U(R) given
by r 7→ r2 for r ∈ U(R) leads to kerπ ∼= Z2 and ]{r2; r ∈ U(R)} =
]U(R)

2 . Given r ∈ U(R), we follow [10, Remark 6.25] to consider the sets
A = {r20; r0 ∈ U(R) ∪ {0}} and B = {r − r21; r1 ∈ U(R) ∪ {0}}. Then,
]A = ]B = ]U(R)

2 + 1 and consequently A ∩ B 6= ∅ which implies that
ρ(r0 + r1i) = r.

�

Writing Z+
m for the cyclic group with order m, we deduce (see [9,

Korollar 6]):
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Corollary 2.3. Įf R is a finite field then there is an isomorphism of
groups:

(1) S1(R) ' (Z+
2 )k provided ]R = 2k and χ(R) = 2;

(2) S1(R) '
{

Z+
]R−1, if ]R ≡ 1 (mod 4);

Z+
]R+1, if ]R ≡ 3 (mod 4).

provided χ(R) 6= 2.

Proof. (1) follows directly from Proposition 2.2(2)(ii).
(2) If ]R ≡ 1 (mod 4) then i ∈ R and by Proposition 2.2(2), we get

an isomorphism S1(R) ∼= U(R). Hence, the well-known isomorphism
U(R) ∼= Z+

]R−1 yields S1(R) ∼= Z+
]R−1.

If ]R ≡ 3 ( mod 4) then, by Fermat Theorem on Sums of Two Squares,
i 6∈ R. Then, by Proposition 2.2(3), there is an exact sequence 1 →
S1(R) → U(R[i]) → U(R) → 1 of abelian groups. Because R and R[i]
are finite fields, there are isomorphisms U(R) ∼= Z]R−1 and U(R[i]) ∼=
Z(]R)2−1. Consequently, we deduce S1(R) ∼= Z+

]R+1 and the proof is
complete.

�

Let now R = Zm, the ring of integers modulo m. The primary
factorization m = pk11 · · · p

kt
t yields an isomorphism of rings Zm

∼=→
Z
p
k1
1
× · · · × Z

p
kt
t
. Because S1(−) is a product preserving functor from

unitary rings to abelian groups, we get an isomorphism

S1(Zm)
∼=→ S1(Z

p
k1
1

)× · · · × S1(Z
p
kt
t

)

and ]S1(Zm) = ]S1(Z
p
k1
1

) · · · ]S1(Z
p
kt
t

). Hence, the problem of determin-
ing the structure of S1(Zm) and ]S1(Zn) has been reduced to the case of
prime powers pk. By the claim in [9, p. 54], the group S1(Zpk) is cyclic
provided p is an odd prime. A proof of that is presented below.

Lemma 2.4. Įf p is a prime and k ≥ 1 then

U(Zpk [i]) ∼=


Z+
pk−1(p−1) ⊕ Z+

pk−1(p−1), if p ≡ 1 (mod 4);

Z+
pk−1 ⊕ Z+

pk−1(p2−1), if p ≡ 3 (mod 4);

Z+
2 , if p = 2 and k = 1;

Z+
22 ⊕ Z+

2k−2 ⊕ Z+
2k−1 , if p = 2 and k ≥ 2.

Proof. First, let p be an odd prime. Recall the well-known the
isomorphism U(Zpk) ∼= ((p) + 1) ⊕ U(Zp) ∼= Z+

pk−1(p−1) stated in [13,
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Theorem 6.7], where (p) is the nilpotent principal ideal of Zpk generated
by p.

Let p ≡ 1 (mod 4) and i ∈ U(Zpk) with order four. Because i ∈ Zp−1
and −1 is the only element in Zp−1 with order two, we deduce that
i2 = −1. Consequently, Zpk [i] ∼= Zpk × Zpk and U(Zpk [i]) ∼= U(Zpk) ×
U(Zpk) ∼= Z+

pk(p−1) ⊕ Z+
pk(p−1).

If p ≡ 3 ( mod 4) then, by Fermat’s Theorem on Sums of Two Squares,
i 6∈ Zpk . Given r0 + r1i ∈ Zpk [i], we see that r0 + r1i ∈ U(Zpk [i]) if and
only if r20 +r21 ∈ U(Zpk) or equivalently, if and only if r0 ∈ U(Zpk) or r1 ∈
U(Zpk). Hence, Zpk [i] is a p-primary ring with the nilpotent principal
prime ideal (p) and ](p) = p2(k−1). Then, the residue filed Zpk [i]/(p) ∼=
Zp2 and in view of [2, Proposition 1], we deduce that U(Zpk [i]) ∼= ((p) +
1) ⊕ U(Zp2). Following the proof of [13, Theorem 6.7], we get (1 +

p)p
l−2

, (1+pi)p
l−2 6≡ 1 ( mod pl) and (1+p)p

l−1

, (1+pi)p
l−1 ≡ 1 ( mod pl)

for l ≥ 2. Because
〈
1+p

〉
∩
〈
1+pi

〉
= {1}, we deduce a group isomorphism

((p)+1) ∼=
〈
1+p

〉
⊕
〈
1+pi

〉 ∼= Z+
pk−1 ⊕Z+

pk−1 . Consequently, we get that
U(Zpk [i]) ∼= Z+

pk−1 ⊕ Z+
pk−1(p2−1).

Let now p = 2. First, it is obvious that U(Z2[i]) = {1, i} ∼= Z2.
Hence, we can assume that k ≥ 2. Recall form [13, Theorem 5.44] that
U(Z2k) ∼=

〈
5
〉
⊕
〈
− 1
〉 ∼= Z+

2k−2 ⊕ Z+
2 for k ≥ 2. Because r0 + r1i ∈

U(Z2k [i]) if any only if r0 is odd and r1 is even or vise versa, we get
]U(Z2k [i]) = 22k−1. Further, (1 + 2i)2

l−2 ≡ 2l−1 + 1 + 2l−1i (mod 2l)
for l > 2. This implies that 2k−1 is the order of 1 + 2i. Next, the
intersection of any two of the subgroups

〈
i
〉
,
〈
5
〉
and

〈
1 + 2i

〉
is the

trivial group and ]U(Z2k [i]) = 22k−1. Thus, we deduce that U(Z2k [i]) ∼=〈
i
〉
⊕
〈
5
〉
⊕
〈
1 + 2i

〉 ∼= Z22 ⊕ Z2k−2 ⊕ Z2k−1 for k ≥ 2 and the proof is
complete.

�

Now, we are in a position to show the main result of this Section:

Theorem 2.5. Įf p is a prime and k ≥ 1 then

S1(Zpk) ∼=


Z+
pk−1(p−1), if p ≡ 1 (mod 4);

Z+
pk−1(p+1)

, if p ≡ 3 (mod 4);

Z+
2 , if k = 1;

Z+
2 ⊕ Z+

22 ⊕ Z+
2k−2 , if k ≥ 2.



M. Golasiński, F. G. Ruiz 155

Proof. (1) If p ≡ 1 (mod 4) then i ∈ Zpk . Because 2 ∈ U(Zpk), by
Proposition 2.2(2), the map ρ : S1(Zpk) → U(Zpk) given by ρ(r0, r1) =
r0 + r1i for (r0, r1) ∈ S1(Zpk) is an isomorphism of groups. Thus,

S1(Zpk) ∼= U(Zpk) ∼= Z+
pk−1(p−1).

(2) If p ≡ 3 (mod 4) then i 6∈ Zpk . Further, U(Zpk) ∼= Z+
pk−1(p−1)

and, in view of Lemma 2.4, it holds U(Zpk [i]) ∼= Z+
pk−1 ⊕ Z+

pk−1(p2−1).
Next, consider the map ρ : U(Zpk [i]) → U(Zpk) defined in Propo-
sition 2.2(2). Then, the restriction ρ|Z+

pk−1

is an isomorphism and,

in view of Proposition 2.2(3), the restriction ρ|Z+

p2−1

is onto. Conse-

quently, ρ : U(Zpk [i]) → U(Zpk) is onto and the short exact sequence
1 → S1(Zpk) → U(Zpk [i])

ρ→ U(Zpk) → 1 from Proposition 2.2(3) yields
S1(Zpk) ∼= Z+

pk−1(p+1)
.

(3) For the group homomorphism ρ : U(Z2k [i]) → U(Z2k) given by
ρ(r0 + r1i) = r20 + r21 for r0 + r1i ∈ U(Z2k [i]), by Proposition 2.2(3), we
get the short exact sequence

1→ S1(Z2k)→ U(Z2k [i])
ρ→ U(Z2k)

of abelian groups with k ≥ 1.
Because U(Z2) = {1}, Lemma 2.4 yields that S1(Z2) ∼= U(Z2[i]) ∼=

Z+
2 . If k ≥ 2 then by the proof of Lemma 2.4, we have that U(Z2k [i]) ∼=〈
i
〉
⊕
〈
5
〉
⊕
〈
1 + 2i

〉 ∼= Z22 ⊕ Z2k−2 ⊕ Z2k−1 . Because ρ(i) = 1, ρ(5) = 52,
ρ(1 + 2i) = 5 and U(Z2k) ∼=

〈
5
〉
⊕
〈
− 1
〉 ∼= Z+

2k−2 ⊕ Z+
2 , we deduce that

Im ρ =
〈
5
〉 ∼= Z+

2k−2 . Consequently, the exact sequence

1→ S1(Z2k)→ U(Z2k [i])
ρ→ Z2k−2 → 1

yields S1(Z2k) ∼= Z+
2 ⊕ Z+

22 ⊕ Z+
2k−2 for k ≥ 2 and the proof is complete.

�

2. Spheres over finite fields and their polynomial
maps. Let R be a commutative and unitary ring. Then, we notice:
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Remark 3.1. For any commutative and unitary ring R there is a bijec-
tion S3(R) ∼= SU(R[i]) determined by the assignment

(r0, r1, r2, r3) 7→
(
r0 + r1i r2 + r3i
−r2 + r3i r0 − r1i

)
for (r0, r1, r2, r3) ∈ S3(R). Consequently, S3(R) inherits the group struc-
ture from SU(R[i]). Notice that S2(R) ∼= {A ∈ SU(R[i]); tr (A) = 0}
provided 2R = 0, where tr : SU(R[i])→ R[i] is the trace function.

Notice that there is an embedding Rn0 ↪→ Sn(R) given by

(r0, . . . , rn−1) 7→ (1 + r0 + · · ·+ rn−1, r0, . . . , rn−1)

for (r0, . . . , rn−1) ∈ Rn0 , where R0 = {r ∈ R; 2r = 0}. In particular,
Rn ↪→ Sn(R) provided χ(R) = 2. If R is a field with χ(R) = 2 then
certainly there is a bijection Sn(R) ∼= Rn and ]Sn(R) = (]R)n.

Now, suppose that R is a finite field with χ(R) 6= 2. Basing on [10,
Theorems 6.26 and 6.27], we obtain:

Theorem 3.2. Įf R is a finite field with χ(R) 6= 2 then for any number
n ≥ 1 it holds:

]Sn(R) =

{
(]R)n + (]R)

n
2 η((−1)

n
2 ), if n is even;

(]R)n − (]R)
n−1
2 η((−1)

n+1
2 ), if n is odd,

where η(1) = 1 and η(−1) =


1, if the equation x2 + 1 = 0

has a solution in R;

−1, otherwise.

Let ]R = pk for an odd prime p. Notice that η(−1) = 1 if and only if
p ≡ 1 (mod 4) or k is an even number.

To examine polynomial maps P = (P0, . . . , Pn) : Sm(R) → Sn(R) in
that case a general result would be useful.

Proposition 3.3. L̨et R be a field and S ⊆ Rm+1, T ⊆ Rn+1 finite
subsets. Then any map f : S → T is a polynomial one for m,n ≥ 0.

Proof. Given a finite subset S ⊆ Rm+1 there is obviously a finite
subset S0 = {r1, . . . , rk} ⊆ R with S ⊆ Sm+1

0 . It is well-know that there
are interpolation polynomials Pr1(X), . . . , Prk(X) ∈ R[X] with Pri(xj) =
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δrirj for i, j = 0, . . . , k. Next for any s = (ri0 , . . . , rim) ∈ Sm+1
0 consider

the polynomial

Ps(X0, . . . , Xm) = Pri0 (X0) · · ·Prim (Xm) ∈ R[X0, . . . , Xm].

Then Ps(s′) = δss′ for any s, s′ ∈ Sm+1
0 .

Now, given a map f : S → T write f(s) = (f0(s), . . . , fn(s)) for
any point s ∈ S. Then, the polynomial map S → T determined by
polynomials:

Q0(X0, . . . , Xm) =
∑
s∈S

f0(s)Ps(X0, . . . , Xm),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Qn(X0, . . . , Xm) =

∑
s∈S

fn(s)Ps(X0, . . . , Xm)

coincides with f : S → T and the proof is complete. �

In particular, the following conclusion follows.

Corollary 3.4. L̨et R be a finite field. Then any map Sm1(R) ×
· · · × Smk(R) → Sn1(R) × · · · × Snl(R) is a polynomial one for
m1, . . . ,mk, n1, . . . , nl ≥ 0.

Let EndR(R[X1, . . . , Xn]) be the set of all R-homomorphisms
of R[X1, . . . , Xn] and AutR(R[X1, . . . , Xn]) the group of all its R-
automorphisms. Write T (R,n) for the tame polynomial auto-
morphism subgroup of AutR(R[X1, . . . , Xn]) generated by (X1 +
F (X2, . . . , Xn), X2, . . . , Xn) for all F (X2, . . . , Xn) ∈ R[X2, . . . , Xn],
P(Rn) for the set of all self-maps of Rn and B(Rn) the group of all
bijections of Rn. Then, we get an obvious map

E : EndR(R[X1, . . . , Xn]) −→ P(Rn).

Theorem 3.5. ([12]) L̨et R be a finite field and Fp the simple field,
where p is a prime. Then:

(1) ]E(T (R, 1)) = ]B(R)/]R − 2)!, so E(T (R, 1)) = B(R) only if R =
F2, F3;

(2) if n ≥ 2 and χ(R) 6= 2 or R = F2 then E(T (R,n)) = B(Rn);
(3) if n ≥ 2, χ(R) = 2 and ]R > 2 then ]E(T (R,n) = ]B(Rn)/2. In

fact,
E(T (R,n)) is the alternating subgroup A(Rn) of the group B(Rn).
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Now, any bijection of Sn1(R) × · · · × Snl(R) yields an bijection of
Rm1+···+mk+k. Furthermore, for χ(R) = 2 there is an obvious polynomial
isomorphism Sn(R)→ Rn. Consequently, Theorem 3.5 leads to:

Corollary 3.6. L̨et R be a finite field. Then:
(1) if χ(R) 6= 2 or R = F2 then any bijection of B(Sn1(R) × · · · ×

Snl(R)) is an invertible polynomial map;
(2) if ]R > 2 and χ(R) = 2 then any bijection of A(Sn1(R) × · · · ×

Snl(R)) is an invertible polynomial map.

Let R be a commutative and unitary ring. Then, we could consider
the non-commutative and unitary ring R{i, j, k} with i2 = j2 = k2 =
−1, ij = k, jk = i, ki = j. Given q = r0 + r1i + r2j + r3k ∈ R{i, j, k},
we write |q|2 = r20 + r21 + r22 + r23 and q̄ = r0 − r1i − r2j − r3k. Then,
qq̄ = |q|2, |q1q2|2 = |q1|2|q2|2 for q, q1, q2 ∈ R{i, j, k} and

S3(R) ∼= {q ∈ R{i, j, k}; |q|2 = 1}.

Hence, S3(R) inherits the group structure which coincides with the pre-
vious one. Further, we have a group monomorphism

ϕ : S3(R)→ U(R{i, j, k})

given by ϕ(r0, r1, r2, r3) = r0 + r1i+ r2j + r3k for (r0, r1, r2, r3) ∈ S3(R).
Notice that r0 + r1i + r2j + r3k ∈ U(R{i, j, k}) if and only if r20 + r21 +
r22 + r23 ∈ U(R). Hence, the map

ρ : U(R{i, j, k})→ U(R)

given by ρ(r0+r1i+r2j+r3k) = r20 +r21 +r22 +r23 for r0+r1i+r2j+r3k ∈
U(R{i, j, k}) is a well-defined group homomorphism and the sequence

1→ S3(R)
ϕ→ U(R{i, j, k}) ρ→ U(R)

is exact.
Next, we consider the non-associative and unitary ring

R{e1, e2, e3, e4, e5, e6, e7}, where products eset are defined by
the Cayley algebra rules for s, t = 1, 2, 3, 4, 5, 6, 7. Given c =
r0+r1e1+r2e2+r3e3+r4e4+r5e5+r6e6+r7e7 ∈ R{e1, e2, e3, e4, e5, e6, e7},
write |c|2 = r20 + r21 + r22 + r23 + r24 + r25 + r26 + r27. Then, |c1c2|2 = |c1|2|c2|2
for c1, c2 ∈ R{e1, e2, e3, e4, e5, e6, e7} and

S7(R) ∼= {c ∈ R{e1, e2, e3, e4, e5, e6, e7}; |c|2 = 1}
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inherits a non-associative group structure.
Notice that we have a non-associative group monomorphism

ϕ : S7(R)→ U(R{e1, e2, e3, e4, e5, e6, e7})

given by ϕ(r0, r1, r2, r3, r4, r5, r6, r7) = r0 + r1e1 + r2e2 + r3e3 + r4e4 +
r5e5+r6e6+r7e7 for (r0, r1, r2, r3, r4, r5, r6, r7) ∈ S7(R). Notice that r0+
r1e1+r2e2+r3e3+r4e4+r5e5+r6e6+r7e7 ∈ U(R{e1, e2, e3, e4, e5, e6, e7})
if and only if r20 + r21 + r22 + r23 + r24 + r25 + r26 + r27 ∈ U(R). Hence, the
map

ρ : U(R{e1, e2, e3, e4, e5, e6, e7})→ U(R)

given by ρ(r0 + r1e1 + r2e2 + r3e3 + r4e4 + r5e5 + r6e6 + r7e7) = r20 +
r21 + r22 + r23 + r24 + r25 + r26 + r27 for r0 + r1e1 + r2e2 + r3e3 + r4e4 +
r5e5 + r6e6 + r7e7 ∈ U(R{e1, e2, e3, e4, e5, e6, e7}) is a well-defined non-
associative group homomorphism and the sequence

1→ S7(R)
ϕ→ U(R{e1, e2, e3, e4, e5, e6, e7})

ρ→ U(R)

is exact.
If R1, R2 are commutative and unitary rings then there is a bijection

Sn(R1×R2) ∼= Sn(R1)×Sn(R2) for n ≥ 0. Because the primary factoriza-
tionm = pk11 · · · p

kt
t yields an isomorphism of rings Zm

∼=→ Z
p
k1
1
×· · ·×Z

p
kt
t
,

we derive a bijection

Sn(Zm) ∼= Sn(Z
p
k1
1

)× · · · × Sn(Z
p
kt
t

).

Thus, the study of Sn(Zm) reduces to Sn(Zpk) for any prime p and k ≥ 1.

Proposition 3.7. Įf p is a prime and k ≥ 1 then:

(1) ]S3(Zpk) =

{
p3k−2(p2 − 1), if p is an odd prime;
23k, if p = 2;

(2) ]S7(Zpk) =

{
p7k−4(p2 − 1)(p2 + 1), if p is an odd prime;
27k, if p = 2.

Proof. (1) First, notice that r0 + r1i+ r2j + r3k 6∈ U(Zpk{i, j, k}) if
only if r20 + r21 + r22 + r23 ≡ 0 (mod p) or equivalently, r20 + r21 + r22 + r23 = 0
in the field Zp.

If p is an odd prime then, in view of [10, Theorem 6.26], the equation
r20 + r21 + r22 + r23 = 0 has p3 + (p − 1)p solutions in Zp. Consequently,
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the equation r20 + r21 + r22 + r23 ≡ 0 (mod p) has p4(k−1)(p3 + (p − 1)p) =
p4k−3(p2 + p − 1) solutions in Zpk . This implies that ]U(Zpk{i, j, k}) =
p4k − p4k−3(p2 + p− 1) = p4k−3(p2 − 1)(p− 1).

If p = 2 then the equation r20 + r21 + r22 + r23 = 0 has 23 solutions
in Z2. Consequently, the equation r20 + r21 + r22 + r23 ≡ 0 (mod 2) has
24(k−1)23 = 24k−1 solutions in Z2k . This implies that ]U(Z2k{i, j, k}) =
24k − 24k−1 = 24k−1.

Next, by Lagrange Four-Square Theorem, the map ρ :
U(Zpk{i, j, k}) → U(Zpk) is onto for any prime p and k ≥ 1. Hence,
the short exact sequence

1→ S3(Zpk)
ϕ→ U(Zpk{i, j, k})

ρ→ U(Zpk)→ 1

and U(Zpk) ∼=


Zpk−1(p−1), if p is an odd prime;
{1}, if p = 2 and k = 1;
Z2 ⊕ Z2k−2 , if p = 2 and k ≥ 2

lead to (1).
(2) If p is an odd prime then, in view of [10, Theorem 6.26], the

equation r20 + r21 + r22 + r23 + r24 + r25 + r26 + r27 = 0 has p7 + (p − 1)p3

solutions in Zp. Consequently, the equation r20 + r21 + r22 + r23 + r24 +
r25 + r26 + r27 ≡ 0 (mod p) has p8(k−1)(p7 + (p− 1)p3) = p8k−5(p4 + p− 1)
solutions in Zpk . This implies that ]U(Zpk{e1, e2, e3, e4, e5, e6, e7}) =
p8k − p8k−5(p4 + p− 1) = p8k−5(p2 − 1)(p− 1)(p2 + 1).

If p = 2 then the equation r20 + r21 + r22 + r23 + r24 + r25 + r26 + r27 = 0 has
27 solutions in Z2. Consequently, the equation r20 + r21 + r22 + r23 + r24 +
r25 + r26 + r27 ≡ 0 (mod 2) has 28(k−1)27 = 28k−1 solutions in Z2k . This
implies that ]U(Z2k{e1, e2, e3, e4, e5, e6, e7}) = 28k − 28k−1 = 28k−1.

Then, we follow mutatis mutandis the procedure presented in (1) and
the proof is completed. �

Now, for z = r0 + r1i ∈ R[i], we write |z|2 = r20 + r21 and z̄ = r0 − r1i.
Then, zz̄ = |z|2, z ∈ U(R[i]) if and only if |z|2 ∈ U(R) and

S3(R) ∼= {(z0, z1) ∈ R[i]×R[i]; |z0|2 + |z1|2 = 1}.

Notice that there is an action

◦ : S1(R)× S3(R) −→ S3(R)

such that λ ◦ (z0, z1) = (λz0, λz1) for λ ∈ S1(R) and (z0, z1) ∈ S3(R).
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Next, q ∈ U(R{i, j, k}) if and only if |q|2 ∈ U(R) for q ∈ R{i, j, k},
and

S7(R) ∼= {(q0, q1) ∈ R{i, j, k} ×R{i, j, k}; |q0|2 + |q1|2 = 1}.

Further, there is an action

◦ : S3(R)× S7(R) −→ S7(R)

such that λ ◦ (q0, q1) = (λq0, λq1) for λ ∈ S3(R) and (q0, q1) ∈ S7(R).
Now, we mimic the Hopf maps h : S3 −→ S2 and H : S7 −→ S4 to

define
h(R) : S3(R) −→ S2(R)

by h(R)(z0, z1) = (|z0|2 − |z1|2, 2z0z̄1) for (z0, z1) ∈ S3(R) and

H(R) : S7(R) −→ S4(R)

by H(R)(q0, q1) = (|q0|2 − |q1|2, 2q0q̄1) for (q0, q1) ∈ S7(R).

Proposition 3.8. L̨et R be a local commutative and unitary ring such
that 2 is not a zero divisor of R. Then:

(1) h(R)−1(h(R)(z0, z1)) = {(λz0, λz1); for λ ∈ S1(R)} ∼= S1(R)

for any (z0, z1) ∈ S3(R);

(2) H(R)−1(h(R)(q0, q1)) = {(λq0, λq1); for λ ∈ S3(R)} ∼= S3(R)

for any (q0, q1) ∈ S7(R).

Proof. (1) Let (z0, z1) ∈ S3(R). Then, certainly it holds
{(λz0, λz1); forλ ∈ S1(R)} ⊆ h(R)−1(h(R)(z0, z1)).

Suppose that h(R)(w0, w1) = h(R)(z0, z1) for some (w0, w1) ∈ S3.
Then, |w0|2 − |w1|2 = |z0|2 − |z1|2 and 2w0w̄1 = 2z0z̄1. Because |w0|2 +
|w1|2 = 1 = |z0|2 + |z1|2 and 2 ∈ R is not a zero divisor, we get |w0|2 =
|z0|2, |w1|2 = |z1|2 and w0w̄1 = z0z̄1. Further, R is a local ring, so
|w0|2 + |w1|2 = 1 = |z0|2 + |z1|2 implies |w0|2 ∈ U(R) or |w1|2 ∈ U(R)
and |z0|2 ∈ U(R) or |z1|2 ∈ U(R). Hence, w0 ∈ U(R) or w1 ∈ U(R) and
z0 ∈ U(R) or z1 ∈ U(R).

If z0 ∈ U(R) then we set λ = z−10 w0; if z1 ∈ U(R) then we set λ =
z−11 w1. Thus, λ ∈ S1(R) and (w0, w1) = (λz0, λz1). Because (z0, z1) ∈
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S3(R) implies z0 ∈ U(R) or z1 ∈ U(R), we get h(R)−1(h(R)(z0, z1)) ∼=
S1(R).

(2) Given (q0, q1) ∈ S7(R), we follow mutatis mutandis (1) to complete
the proof.

�
By [1, Theorem 8.7], any commutative Artinian and unitary ring (in

particular, any finite commutative and unitary ring) is a finite prod-
uct of commutative Artinian local rings. Further, Sn(R1 × R2) ∼=
Sn(R1)×Sn(R2) for any commutative and unitary rings R1, R2 and n ≥ 0.
Consequently, in view of Proposition 3.8, for a commutative Artinian and
unitary ring R, and such that 2 is not a zero divisor in R, we get embed-
dings

h̄(R) : S3(R)/S1(R) −→ S2(R) and H̄(R) : S7(R)/S3(R) −→ S4(R).

In particular:
if R is a finite field with χ(R) 6= 2 then Corollary 2.3 and Theorem 3.2

imply that h̄(R) : S3(R)/S1(R) −→ S2(R) and H̄(R) : S7(R)/S3(R) −→
S4(R) are bijections;

if R = Zpk for an odd prime p and k ≥ 1 then Theorem 2.5 and
Proposition 3.7 lead to:

]S2(Zpk) ≥
{
p3k−2(p+ 1), if p ≡ 1 (mod 4);
p3k−2(p− 1), if p ≡ 3 (mod 4)

and
]S4(Zpk) ≥ p4k−2(p2 + 1).

Remark 3.9. Because

S15(R) ∼= {(c0, c1) ∈ R{e1, e2, e3, e4, e5, e6, e7}×R{e1, e2, e3, e4, e5, e6, e7};

|c0|2 + |c1|2 = 1},
we make use the Hopf map H : S15 → S8 to consider H(R) : S15(R)→

S8(R) for a commutative and unitary ring R, and state a result as in
Proposition 3.8 as well.

We close the paper with:

Conjecture 3.10. If p is an odd prime and k ≥ 1 then:

(1) ]S2(Zpk) =

{
p3k−2(p+ 1), if p ≡ 1 (mod 4);
p3k−2(p− 1), if p ≡ 3 (mod 4);

(2) ]S4(Zpk) = p4k−2(p2 + 1).
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and

Problem 3.11. Let p be an odd prime and k ≥ 1. Find:
(1) ](Sn(Zpk)) for n > 4 with n 6= 7;
(2) the group structure of S3(Zpk).
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A. Bauval, D. L. Gonçalves, C. Hayat and P.
Zvengrowski

The Borsuk-Ulam Theorem for
Double Coverings of Seifert Manifolds

We study a Borsuk-Ulam type theorem for pairs (M, τ) with τ a fixed point
free involution of M , and such that both M and N : = M/τ are Seifert
manifolds. In this note our point of view will be to start with a Seifert
manifold N . Any non-trivial element ξ ∈ H1(N ;Z2) then gives rise to a
pair (Mξ, τξ) = (M, τ) with M (necessarily) also a Seifert manifold, and a
double covering p : M � N , with τ being the fixed point free involution on
M associated to this double covering as the non-trivial deck transformation.
We then seek the largest value of n, called the Z2-index of (M, τ), such that
the Borsuk-Ulam property holds for maps into Rn, i.e. such that for every
continuous map f : M → Rn, there is an x ∈M such that f(x) = f(τ(x)).
In case M is a 3-manifold (such as a Seifert manifold), the Z2-index can
take only the values 1, 2, 3.

1 Introduction
The study of involutions on manifolds has been of great interest and

importance within topology, as illustrated by the books of J. Matoušek
[12] and S. L. de Medrano [11] (and in particular, for involutions on
Seifert manifolds, cf. the book of Montesinos [13]). The most famous
theorem in the subject is undoubtedly the classical Borsuk-Ulam theorem,
which applies to the antipodal involution of a sphere. This theorem
together with various generalizations and applications continues to be of
great interest. For example, a generalization of the Borsuk-Ulam theorem
that applies to a fixed point free involution on any manifold has recently
been studied by Gonçalves, Hayat, and Zvengrowski [7]. The case of
manifolds of dimension 2 and the corresponding Borsuk-Ulam theorem

c© A. Bauval, D. L. Gonçalves, C. Hayat and P. Zvengrowski, 2013
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has also been recently studied by Gonçalves and Guaschi [6]. The above
mentioned book of Matoušek gives an extensive set of references related to
the Borsuk-Ulam theorem; in addition to these further interesting aspects
and generalizations of the classical Borsuk- Ulam theorem appear (among
others) in work by K. D. Joshi [10], J. Jaworowski [9], A. Dold [5], and
more recently in work of P. L. Q. Pergher, D. de Mattos, E. L. dos Santos
[16], P. L. Q. Pergher, H. K. Singh, T. B. Singh [17], as well as survey
papers among which we mention H. Steinlein [22], and I. Nagasaki [14].

In this paper we attempt to initiate this study for the Seifert man-
ifolds, a large and important class of 3-manifolds introduced by Seifert
[19] in 1933. This is possible, using the aforementioned paper [7] and
the knowledge of the Z2-cohomology rings of these manifolds, cf. [2], [3],
[4] for the orientable case and more recently [1] for all Seifert manifolds.
We will suppose throughout that all manifolds under consideration are
closed and connected.

Given a (closed, connected) m-manifold N , any non-trivial element
ξ ∈ H1(N ;Z2) gives rise to an epimorphism φ : π1N � Z2 and a pair
(Mξ, τξ) = (M, τ), where p : M � N is a double covering,M is a (closed,
connected) m-manifold, and τ is the fixed point free involution on M
associated to this double covering as the non-trivial deck transformation.
This correspondence is via the sequence of isomorphisms

hom(π1(N),Z2) ≈ hom((π1(N))ab,Z2) ≈ hom(H1(N),Z2) ≈ H1(N ;Z2).
(1)

Definition 1.1. (i) We say that the Borsuk-Ulam property BU(n) holds
for (M, τ) if for every continuous map f : M → Rn, there is an x ∈ M
such that f(x) = f(τ(x)).

(ii) The Z2-index indZ2(M, τ) is then defined as the largest n ≤ ∞
such that BU(n) holds.

>From [7] it is known that indZ2(M, τ) ≥ 1 always holds, and
indZ2(M, τ) = 1 if and only if ξ ∈ Im(ρ : H1(N ;Z)→ H1(N ;Z2), where
ρ is the coefficient homomorphism induced by the surjection Z � Z2.
Furthermore, it is shown there that indZ2

(M, τ) ≤ m = dim(M) and
indZ2

(M, τ) = m if and only if ξm 6= 0 ∈ Hm(N ;Z2). It follows that the
inequality 1 ≤ indZ2(M, τ) ≤ m is always satisfied. In particular, for
m = 3, the Z2-index can only equal 1, 2, or 3. These facts are formally
stated in Section 2 as Theorem 2.1.

In the present work, we suppose that N is a Seifert manifold (of
dimension m = 3), presented in the usual way by its Seifert invariants
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(cf. [15], [19]). The presentation of π1(N), associated to these invariants,
is the standard presentation found in [15], and allows one to list the (non-
trivial) homomorphisms φ : π1N � Z2. We classify the φ’s for which the
Z2-index equals 1, equals 2, or equals 3. The main results are expressed
in terms of the Seifert invariants of N and the homomorphism φ.

This work contains five sections. In Section 2, we recall some basic
facts about Seifert manifolds. In Section 3 we consider the situation of
maps into R2; the main results are Proposition 3.4 and Theorem 3.5.
The former gives necessary and sufficient conditions for indZ2

(M, τ) = 1,
and the latter (which is essentially the negation of the former) for
indZ2(M, τ) ≥ 2. In Section 4 we consider the situation of maps into
R3; the main result is Theorem 4.3 which gives necessary and sufficient
conditions for indZ2

(M, τ) = 3. In Section 5 we make some general com-
ments about the relation between the Z2-index = 2 and the Z2-index =
3 cases. In this section we also study several specific examples that effec-
tively illustrate the techniques, for a variety of Seifert manifolds, and also
show that the distinction between the various cases can be surprisingly
delicate.

Another (and probably more natural) approach to these questions is
to start with the manifold M and fixed point free involution τ , then
construct N as the orbit space M/τ . For Seifert manifolds M this can
lead to cases that are not covered in the present paper, indeed cases
where N is not a Seifert manifold in the classical sense, depending on the
geometry (in the sense of Thurston) ofM . The authors hope to complete
the study, from this point of view, in subsequent research, with [7] being
the first step in this direction and the present note the second step. We
also note that the condition ξm 6= 0 mentioned above becomes ξ3 6= 0
for a 3-manifold, and for orientable 3-manifolds this condition also arises
in the study of general relativity (where one says such 3-manfolds have
“type 1"), cf. [21]. The condition ξ3 6= 0 is equivalent to the existence
of a degree 1 (or odd degree) map of the 3-manifold onto RP 3.

2 Introductory Remarks and Notation for 3-
manifolds

Let N be a 3-manifold. In Section 1 the isomorphism (1) between
H1(N ;Z2) and hom(π1(N),Z2) was introduced. Under this correspon-
dence, the image in H1(N ;Z2) of a homomorphism φ : π1(N) → Z2 will
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be denoted by ξφ = ξ. Any non-zero element ξ ∈ H1(N ;Z2) corresponds
to an epimorphism φ : π1N � Z2 which induces a short exact sequence:

1→ Kerφ� π1N � Z2 → 0.

>From the theory of covering spaces, we know that there exists a
connected 3-manifold M = Mφ such that Kerφ = π1(M) is a normal,
index 2, subgroup of π1(N), and M � N is the regular double covering
of N corresponding to Kerφ. We also know that the non-trivial deck
transformation is a fixed point free involution τφ = τ on M such that the
quotient M/τ is homeomorphic to N . We will use this correspondence
freely whenever necessary.

From [7] Theorems (3.1) and (3.2) we have:

Theorem 2.1. Let N be a 3-manifold and φ : π1(N) � Z2 an epimor-
phism. Let (M, τ) and ξ ∈ H1(N ;Z2) be determined as above.

(i) One has indZ2
(M, τ) = 1 if and only if the homomorphism

φ : π1(N) � Z2 factors through the projection Z � Z2 (equivalently
ξ ∈ Im(ρ : H1(N ;Z)→ H1(N ;Z2))), otherwise indZ2

(M, τ) ∈ {2, 3},

(ii) One has indZ2
(M, τ) = 3 if and only if ξ3 6= 0.

We now focus on the situation where N is any Seifert manifold (ori-
entable or not), as introduced in [19]. We shall answer the following
question: given a presentation of N in terms of Seifert invariants, for
which φ is indZ2(M, τ) = 1, 2, or 3 ?

Following the notation of Orlik [15], from now on, N will be a Seifert
manifold described by a list of Seifert invariants

{e; (∈, g); (a1, b1), . . . , (an, bn)}

(note that Orlik uses b for the Euler number e). We do not need them to
be “normalized” as in [15] and [19]: we only assume that e is an integer,
the type ∈ will described below, g is the genus of the base surface (the
orbit space obtained by identifying each S1 fibre of N to a point), and
for each k, the integers ak, bk are coprime with ak 6= 0 (in case bk = 0
then ak = ±1).

As in [15], p.74 (and elsewhere), it is convenient to add an additional
(non-exceptional) fibre a0 = 1, b0 = e. We shall then use the following
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presentation of the fundamental group of N :

π1(N) =

〈s0, . . . , sn
v1, . . . , vg′

h

∣∣∣∣∣∣
[sk, h] and sakk h

bk , 0 ≤ k ≤ n
vjhv

−1
j h−εj , 1 ≤ j ≤ g′

s0 . . . snV

〉
, (2)

where the generators and g′, V are described below. Also note that if
e = 0 then the relation sa00 h

b0 reduces to s0 = 1, so in this case s0 is
usually omitted.

• The type ∈ of N equals:

o1 if both the base surface and the total space are orientable
(which forces all εj ’s to equal 1);

o2 if the base surface is orientable and the total space is non-
orientable, hence g ≥ 1 (which forces all εj ’s to equal −1);

n1 if both the base surface and the total space are non-orientable
(hence g ≥ 1) and moreover, all εj ’s equal 1;

n2 if the base surface is non-orientable (hence g ≥ 1) and the
total space is orientable (which forces all εj ’s to equal −1);

n3 if both the base surface and the total space are non-orientable
and moreover, all εj ’s equal −1 except ε1 = 1, and g ≥ 2;

n4 if both the base surface and the total space are non-orientable
and moreover, all εj ’s equal −1 except ε1 = ε2 = 1, and g ≥ 3.

We note that these six types, in Seifert’s original notation, are
respectively denoted Oo, No, Nn, On, NnI, NnII, where the
first (capital) letter refers to the orientability or non-orientability
of the total space N , while the second (lower case) letter refers to
the same for the base surface.

• The orientability of the base surface and its genus g determine the
number g′ of the generators vj ’s and the word V in the last relator
of π1(N) as follows:

– when the base surface is orientable, g′ = 2g and V =
[v1, v2] . . . [v2g−1, v2g];

– when the base surface is non-orientable, g′ = g and V =
v21 . . . v

2
g .
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• The generator h corresponds to the generic regular fibre.

• The generators sk for 0 ≤ k ≤ n correspond to (possibly) excep-
tional fibres.

Throughout this paper, we shall use the following notations (the last
one Sφ depends on φ, all the previous ones only on N).

Notation 2.2. Let N be a Seifert manifold described by a list of Seifert
invariants

{e; (∈, g); (a1, b1), . . . , (an, bn)}.

• Denoting by a the least common multiple of the ak’s,

c =

n∑
k=0

bk(a/ak).

• The number of even ak’s will be denoted by d.

• We distinguish three cases:

– Case 1, d = 0 and c is even;

– Case 2, d = 0 and c is odd;

– Case 3, d > 0.

• In Case 3, the indices k are reordered by decreasing 2-valuation
ν2(ak). Hence the set of even ak’s will be {a0, . . . , ad−1} and the
set of k’s for which ak has maximal 2-valuation, denoted by SN ,
will be {0, . . . , J − 1} for some 0 < J ≤ d. Note that after this
reordering, in Case 3, a0 6= 1.

• Sφ will denote the set of k’s for which φ(sk) = 1.

Note that these cases are not related to the type ∈, each of the three
cases can occur with any of the six types. The next lemma will be useful
in Section 3.

Lemma 2.3. In Case 3 (d > 0), c has the same parity as J . Further-
more, one also has Sφ ⊆ {0, . . . , d− 1}, |Sφ| is even, and φ(h) = 0.
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Proof. With the above notational conventions, a/ak is odd if and only
if k < J , and for such k’s, bk is also odd since it is coprime to ak.
Hence, modulo 2, c =

∑
bk(a/ak) ≡

∑
0≤k<J 1 = J . The fact that

Sφ ⊆ {0, . . . , d − 1} follows directly from the definition of d and the
reordering convention in Case 3. If we take any k ∈ {0, . . . , d − 1} we
have ak even and bk odd, hence 0 = φ(sakk h

bk) = akφ(sk) + bkφ(h) =
φ(h). Finally, note that φ(V ) = 0 in both the case of orientable or non-
orientable base surface, since φ is a homomorphism and Im(φ) ⊆ Z2.
Then 0 = φ(s0 · · · snV ) = φ(s0) + . . . φ(sn) implies |Sφ| is even.

We close this section with an abelianized version of (2), which gives
a presentation of H1(N) = H1(N ;Z). This will also be useful for the
work in Section 3.

H1(N) =

〈s0, . . . , sn
v1, . . . , vg′

h

∣∣∣∣∣∣
aksk + bkh, 0 ≤ k ≤ n
(1− εj)h, 1 ≤ j ≤ g′
s0 + . . .+ sn + V

〉
, (3)

where V = 0 for types o1 and o2, and V = 2(v1 + . . .+ vg) for the four
remaining types.

3 Study of indZ2
(M, τ) ≥ 2

As before, let φ : π1(N) � Z2 be an epimorphism and ξ ∈ H1(N ;Z2)
the corresponding cohomology class as given in (1). By Theorem 2.1,
the set of ξ’s for which indZ2

(M, τ) = 1 is the image of the coefficient
homomorphism ρ : H1(N ;Z) → H1(N ;Z2), so our initial goal in this
section is to compute Im(ρ) (a less direct method, leading to the same
results, would be to compute the kernel of the Bockstein homomorphism
H1(N ;Z2) → H2(N ;Z)). This is done in Propositions 3.1, 3.3, and 3.4.
Then, in 3.5, we determine when ξ 6∈ Im(ρ), and this is equivalent to
indZ2

(M, τ) ≥ 2.
>From the presentation (3) of H1(N) we shall compute H1(N ;Z2)

(Proposition 3.1, which will be repeated later as a small part of The-
orem 4.1), and similarly compute H1(N ;Z) (Proposition 3.3). We use
the fact that H1(N ;Z2) naturally identifies to the subspace of cocycles
contained in C1(N,Z2) := hom(C1(N),Z2), where C1(N) is the free
abelian group with generators vj , sk, h. Furthermore, using the isomor-
phism (1), we see that the 1-cocycles are simply the 1-cochains that
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vanish on the abelianized relations for π1(N), as given in (3). We denote
by v̂j (1 ≤ j ≤ g′), ŝk (0 ≤ k ≤ n), ĥ, the elements of the dual basis
of C1(N,Z2) corresponding respectively to vj , sk, and h. In Proposition
3.3, the same notations and identifications will be used, replacing Z2

by Z, recalling also that H1(X;Z) is a free abelian group for any finite
CW -complex X.

Proposition 3.1. Let α = ĥ+
∑n
k=0 bkŝk and αk = ŝk + ŝ0, 1 ≤ k ≤ n.

A basis of the Z2-vector space H1(N ;Z2) ⊆ C1(N,Z2) is (with Notation
2.2):

– Case 1 : {v̂1, . . . , v̂g′ , α},

– Case 2 : {v̂1, . . . , v̂g′},

– Case 3 : {v̂1, . . . , v̂g′ , α1, . . . , αd−1}.

Proof. Consider an arbitrary element

u = xĥ+

n∑
k=0

zkŝk +

g′∑
j=1

yj v̂j ∈ C1(N ;Z2)

(with zk, yj , x ∈ Z2). Due to the presentation (2) of π1(N), u ∈
H1(N ;Z2) if and only if the following n + 2 equations, coming from
the relations in (3), are satisfied:

akzk + bkx = 0, k = 0, . . . , n, and z0 + . . .+ zn = 0.

When d = 0 all ak and a are odd, so c =
∑
bk and this system is

thus equivalent to:

zk = bkx (k = 0, . . . , n) and cx = 0.

The elements of H1(N ;Z2) are therefore the u’s of the form:

u = x

(
ĥ+

n∑
k=0

bkŝk

)
+

g′∑
j=1

yj v̂j ,

with no restriction on x in Case 1 (d = 0 and c even), but with x = 0 in
Case 2 (d = 0 and c odd).
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When d > 0, the system is equivalent to:

x = 0, zk = bkx (k = d, . . . , n) and z0 + . . .+ zn = 0,

which simplifies to:

x = zd = . . . = zn = 0 and z0 = z1 + . . .+ zd−1.

So, in Case 3, the elements of H1(N ;Z2) are the u’s of the form:

∑
1≤k≤d−1

zk(ŝk + ŝ0) +

g′∑
j=1

yj v̂j ,

which completes the proof.

Remark 3.2. In future use of this proposition and the following ones
it will be important to note that if the cohomology class u ∈ H1(N ;Z2)
corresponds to the epimorphism φ : π1(N) � Z2 via the isomorphism (1),
then zk = φ(sk), yj = φ(vj), and x = φ(h). In this case we also write
u = ξφ = ξ, as in Section 1.

Proposition 3.3. The abelian group H1(N ;Z) is free and generated by
the following elements of C1(N,Z):

• if ∈= o2: {v̂1, . . . , v̂g′},

• if ∈= n2, n3, n4: {v̂2 − v̂1, . . . , v̂g′ − v̂1},

• if ∈= o1:

– if c = 0: {v̂1, . . . , v̂g′ , aĥ−
∑n
k=0 bk(a/ak)ŝk},

– if c 6= 0: {v̂1, . . . , v̂g′},

• if ∈= n1:

– if c is even: {(c/2)v̂1+aĥ−
∑n
k=0 bk(a/ak)ŝk, v̂2−v̂1, . . . , v̂g′−

v̂1},

– if c is odd: {cv̂1 + 2aĥ− 2
∑n
k=0 bk(a/ak)ŝk, v̂2− v̂1, . . . , v̂g′ −

v̂1}.
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Proof. It was noted earlier in this section that H1(N ;Z) is free. As in
the proof of Proposition 3.1, consider an arbitrary element

u = xĥ+

n∑
k=0

zkŝk +

g′∑
j=1

yj v̂j ∈ C1(N ;Z),

now with zk, yj , x ∈ Z. We obtain that u ∈ H1(N ;Z) if and only if the
following equations are satisfied:

akzk + bkx = 0, k = 0, . . . , n;

(1− εj)x = 0, j = 1, . . . , g′;

n∑
k=0

zk = 0 if ∈= o1, o2;

n∑
j=0

zk + 2

g′∑
j=1

yj = 0 if ∈= n1, n2, n3, n4.

Let us first treat the four easiest cases. As soon as some εj equals −1 (i.e.
∈= o2, n2, n3, n4), the equation involving such a εj implies x = 0, which,
by the first n+ 1 equations, forces all zk’s to be also zero. The remaining
last equation thus reduces to 0 = 0 if ∈= o2 and to y1 = −

∑
j>1 yj

if ∈= n2, n3, n4. This already enables us to assert that the elements of
H1(N ;Z) are the u’s of the form:

• if ∈= o2:
∑
yj v̂j

• if ∈= n2, n3, n4:
∑
j>1 yj(v̂j − v̂1).

In the two remaining cases ∈= o1, n1 (where the conditions (1− εj)x = 0
are vacuous since εj = 1), first note that the first n+ 1 equations imply
that each ak divides x, hence so does a (their l.c.m.). Letting x = ax′,
these equations may be rewritten:

zk = −bk(a/ak)x′, k = 0, . . . , n.

The remaining last equation thus becomes:

cx′ = 0 if ∈= o1; cx′ = 2
∑

yj if ∈= n1.

When ∈= o1, this last equation forces x′ (hence also the zk’s) to be 0
if and only if c 6= 0. Hence the elements of H1(N ;Z) are the u’s of the
form:
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• if ∈= o1 and c 6= 0:
∑
yj v̂j

• if ∈= o1 and c = 0: x′
(
aĥ−

∑n
k=0 bk(a/ak)ŝk

)
+
∑
yj v̂j .

In the last remaining case (∈= n1), the last equation forces x′ to be even
whenever c is odd, which naturally leads us to consider two subcases:

• if c is even, this equation amounts to y1 = (c/2)x′ −
∑
j>1 yj ;

• if c is odd, letting x′ = 2x′′ allows rewriting the equation as y1 =
cx′′ −

∑
j>1 yj .

Hence the elements of H1(N ;Z) are the u’s of the form:

• if ∈= n1 and c is even:

x′

(
aĥ−

n∑
k=0

bk(a/ak)ŝk + (c/2)v̂1

)
+
∑
j>1

yj(v̂j − v̂1)

• if ∈= n1 and c is odd:

x′′

(
2aĥ− 2

n∑
k=0

bk(a/ak)ŝk + cv̂1

)
+
∑
j>1

yj(v̂j − v̂1),

which completes the proof.

>From Theorem 2.1 and Propositions 3.1 and 3.3 we deduce:

Proposition 3.4. With the notations of Proposition 3.1 and Notation
2.2, the subspace Im(ρ) ⊆ H1(N ;Z2) has basis:

• if ∈= o2: {v̂1, . . . , v̂g′},

• if ∈= n2, n3, n4: {v̂2 + v̂1, . . . , v̂g′ + v̂1},

• if ∈= o1: if c 6= 0 then {v̂1, . . . , v̂g′},

– if c = 0 and d = 0 then {v̂1, . . . , v̂g′ , α},
– if c = 0 and d > 0 then {v̂1, . . . , v̂g′ ,

∑
1≤k≤J−1 αk},

• if ∈= n1:
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– if c is odd: {v̂1, . . . , v̂g′},
– when c is even and d = 0: {v̂2 + v̂1, . . . , v̂g′ + v̂1, (c/2)v̂1 +α},
– if c is even and d > 0: {v̂2 + v̂1, . . . , v̂g′ + v̂1, (c/2)v̂1 +∑

1≤k≤J−1 αk}.

Proof. Most of this statement follows immediately from Propositions 3.1
and 3.3; we shall address the only non-obvious parts which are the two
possibilities (∈= o1, c = 0) and (∈= n1, c even). Note that in these two
cases, Case 2 (d = 0, c odd) does not occur.

If ∈= o1 and c = 0, we must compute the image in H1(N ;Z2) of
u := aĥ −

∑n
k=0 bk(a/ak)ŝk ∈ H1(N ;Z), in terms of the generators of

H1(N ;Z2).

• If d = 0 (Case 1, a, ak are all odd): ρ(u) = ĥ+
∑n
k=0 bkŝk = α.

• If d > 0 (Case 3, a/ak is odd only for 0 ≤ k ≤ J − 1, a is even, and
b0, . . . , bd−1 are odd ):

ρ(u) = 0 · ĥ+

n∑
k=0

bk(a/ak)ŝk =

J−1∑
k=0

bkŝk =

J−1∑
k=0

ŝk.

By Lemma 2.3 J is even, so we may rewrite this sum as
∑J−1
k=1 (ŝk+

ŝ0) =
∑J−1
k=0 αk, as desired.

• If ∈= n1 and c is even, the proofs in the two cases (Case 1 and Case
3) are identical to the corresponding previous two cases for ∈= o1,
except that (c/2)v̂1 is added to u and hence also to ρ(u).

We now take into account Remark 3.2, Notation 2.2, and Proposition
3.4 (in its negated form), to prove the main theorem of this section.

Theorem 3.5. One has indZ2
(Mφ, τφ) ∈ {2, 3} in exactly the following

cases:

• Either ∈= o1 and c 6= 0, or ∈= n1 and c is odd, or ∈= o2, and in
addition {φ(h), φ(s0), . . . , φ(sn)} 6= {0},

• Either ∈= n2 or ∈= n3 or ∈= n4, and in addition
{φ(
∑
vj), φ(h), φ(s0),

. . . , φ(sn} 6= {0},
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• ∈= o1, c = 0, d > 0 and Sφ 6= ∅, SN

• ∈= n1, c is even and:

– if d = 0:
∑g′

j=1 φ(vj) 6= (c/2)φ(h)

– if d > 0: either Sφ 6= ∅, SN , or Sφ = ∅ and
∑g′

j=1 φ(vj) 6= 0,

or Sφ = SN and
∑g′

j=1 φ(vj) 6= (c/2).

Proof. Writing as usual ξ = ξφ ∈ H1(N ;Z2), the condition given in
Theorem 2.1(1) tells us that indZ2

(Mφ, τφ) ∈ {2, 3} if and only if ξ 6∈
Im(ρ). Now Proposition 3.4 identifies Im(ρ), so in each case we simply
have to negate the conditions given in Proposition 3.4.

• When either ∈= o1 and c 6= 0, or ∈= n1 and c is odd, or ∈= o2,
Im(ρ) = 〈v̂1, . . . , v̂g′〉. Therefore ξ = xĥ+

∑n
k=0 zkŝk+

∑g′

j=1 yj v̂j 6∈
Im(ρ) if and only if some zk or x is non-zero, which is identical to
the given condition (see Remark 3.2).

• When either ∈= n2 or ∈= n3 or ∈= n4, Im(ρ) = 〈v̂2 + v̂1, . . . , v̂g′ +

v̂1〉. Therefore ξ ∈ Im(ρ) if and only if ξ =
∑g′

j=2 yj(v̂j + v̂1), or

equivalently ξ =
∑g′

j=1 yj v̂j with
∑g′

j=1 yj = 0. So ξ 6∈ Im(ρ) if

and only if some xk 6= 0 or x 6= 0 or
∑g′

j=1 yj 6= 0, which is identical
to the given condition.

• When ∈= o1, c = 0, d = 0, we see from Propositions 3.4 and 3.1
(Case 1) that ρ is surjective. So ξ ∈ Im(ρ), i.e. indZ2

(M,φ) = 1,
and hence this case does not appear on the list in Theorem 3.5.

• When ∈= o1, c = 0, d > 0, we have Case 3 so Lemma 2.3 applies,
and we shall use it several times here. In particular we will use
0 = c ≡ J (mod 2) and x = φ(h) = 0 without further mention.
Here Im(ρ) = 〈v̂1, . . . , v̂g′ ,

∑J−1
k=1 αk〉, hence ξ ∈ Im(ρ) if and only

if, for some yj , z ∈ Z2,

ξ =

g′∑
j=1

yj v̂j + z

J−1∑
k=1

(ŝk + ŝ0) =

g′∑
j=1

v̂j +

J−1∑
k=0

zŝk.

Since, as already noted, x = 0, we deduce ξ =
∑g′

j=1 yj v̂j +∑J−1
k=0 zŝk 6∈ Im(ρ) if and only if either φ(ŝk) = zk 6= 0 for
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some k ≥ J , or zJ = . . . = zn = 0 and {φ(ŝ0), . . . , ϕ(ŝJ−1)} =
{z0, . . . , zJ−1} = {0, 1} (i.e. ϕ(ŝ0), . . . , φ(ŝJ−1) are not all equal).
These conditions are easily seen, recalling Notation 2.2, to be equiv-
alent to Sφ 6= ∅, SN , as stated.

• When ∈= n1, c even, and d = 0, we have Case 1 so zk = bkx, 0 ≤
k ≤ n, as seen in the proof of Proposition 3.1. Here Im(ρ) =
〈v̂2 + v̂1, . . . , v̂g′ + v̂1, (c/2)v̂1 + α〉. Noting that α(h) = x and
v̂1(h) = 0, this gives that ξ ∈ Im(ρ) if and only if

ξ =

g′∑
j=2

yj(v̂j + v̂1) + x[(c/2)v̂1 + α] =

g′∑
j=1

yj v̂j + xα

=

g′∑
j=1

yj v̂j + xĥ+

n∑
k=0

zkŝk,

where y1 = x(c/2) +y2 + . . . yg′ , or equivalently
∑g′

j=1 yj = x(c/2).

It follows that ξ 6∈ Im(ρ) if and only if
∑g′

j=1 yj 6= (c/2)x, and this
is the same as the stated condition.

• When ∈= n1, c even, and d > 0 we again have Case 3 so as in the
previous Case 3, J is even and x = 0. Now

Im(ρ) = 〈v̂2 + v̂1, . . . , v̂g′ + v̂1, (c/2)v̂1 +

J−1∑
k=1

ŝk + ŝ0〉.

Then ξ ∈ Im(ρ) if and only if ξ =
∑g′

j=2 yj(v̂j + v̂1) + tc1v̂1 +

t
∑n
k=0 ŝk =

∑g′

j=1 yj v̂j + t
∑n
k=0 ŝk, where y1 = y2 + . . . + yg′ +

t(c/2), or equivalently
∑g′

j=1 yj = t(c/2). It follows that ξ 6∈ Im(ρ)

if and only if either Sφ 6⊆ SN , or Sφ ⊆ SN and
∑g′

j=1 φ(vj) 6=
(c/2)φ(sk) for at least one k, 1 ≤ k ≤ J − 1. Again, these
conditions are easily seen to be equivalent to the stated conditions
in this case.
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4 Study of indZ2
(M, τ) = 3

According to 2.1(ii), one has indZ2(M, τ) = 3 if and only if ξ3 6= 0.
We therefore begin this section by stating known results (cf. [1], [2], [3],
[4]) for the Z2-cohomology ring of a Seifert manifold N . For H1(N ;Z2)
this necessarily overlaps with some of the computations done in Section
3, and the notations used in Section 3 are consistent with those in the
references (where we now will write v̂j = θj). For types ∈= o1, o2 what
we now call θ1, θ2, θ3, θ4, . . . correspond respectively to θ1, θ

′
1, θ2, θ

′
2, . . .

in [4], while the notation is identical for the remaining four types. As
far as the cup products it suffices to list just the non-zero products in
positive dimensions, on the generators, also taking account that xy = yx
in H∗( ; Z2).

Theorem 4.1. Let N be any Seifert manifold described by a list of Seifert
invariants

{e; (∈, g); (a1, b1), . . . , (an, bn)},

the type ∈ being o1, o2, n1, n2, n3, n4.
Using Notation 2.2, the cohomology groups H∗(N ;Z2) are: H0 =

Z2{1} (the unit for the cup-product), H3 = Z2{γ}, and (with 1 ≤ j ≤
g′ = 2g for the types o1 and o2, and 1 ≤ j ≤ g′ = g for the other types):

– Case 1 (if d = 0 and c is even): H1 = Z2{θ1, . . . θg′ , α = ĥ +∑n
k=0 bkŝk}, H2 = Z2{ϕ1, . . . , ϕg′ , β}.

– Case 2 (if d = 0 and c is odd): H1 = Z2{θ1, . . . , θg′}, H2 =
Z2{ϕ1, . . . , ϕg′},

– Case 3 (if d > 0): H1 = Z2{θ1, . . . θg′ , α1, . . . αd−1} ,
H2 = Z2{ϕ1, . . . , ϕg′ , β1, . . . , βd−1}.

The non-trivial cup-products, on the generators of H1⊗H1 and H1⊗
H2, are:

– In all three Cases, for the types o1 and o2, θ2i−1ϕ2i = θ2iϕ2i−1 = γ,
while for the other types θjϕj = γ.

– in Case 1, for the types o1 and o2, θ2i−1θ2i = β, while for the
other types θ2j = β.
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– in Case 1, θjα = ϕj, αβ = γ, αϕj = γ when εj = −1 (as specified
in Section 2 for each of the types), and

α2 = (c/2)β +
∑
εj=−1

ϕj .

– in Case 3 (i.e. d > 0), αkβk = γ, k > 0, and, for k, l > 0,

αkα` =
a0
2
β0 + δk,`

ak
2
βk,

where β0 denotes
∑

1≤k≤d−1 βk.

>From this theorem, we deduce:

Proposition 4.2. With the same notations, let ξ = ξφ ∈ H1(N ;Z2).

• In Case 1,

ξ3 =



φ(h)(c/2) · γ when ∈= o1,

φ(h)((c/2) +
∑
φ(vi)) · γ when ∈= o2, n1,

φ(h)((c/2) + g) · γ when ∈= n2,

φ(h)((c/2) + φ(v1) + g − 1) · γ when ∈= n3,

φ(h)((c/2) + φ(v1) + φ(v2) + g) · γ when ∈= n4.

• In Case 2, ξ3 = 0.

• In Case 3, ξ3 = (
∑
φ(sk)(ak/2)) · γ.

Proof.

Case 1. Let ξ = x · α+
∑
yj · θj with x = φ(h) and yj = φ(vj), then

ξ2 = x · α2 +
∑

yj · θ2j = x((c/2) · β +
∑
εj=−1

ϕj) + y · β,

with y = 0 when ∈= o1, o2, y =
∑
yj when ∈= n1, n2, n3, n4, and∑

εj=−1 ϕj = 0 for types o1, n1. For the various types, this now
gives :

– when ∈= o1, ξ3 = (xα+
∑2g
j=1 yjθj) ∪ x(c/2)β = x(c/2) · γ.
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– when ∈= o2,

ξ3 = (xα+

2g∑
j=1

yjθj) ∪ x((c/2)β +

2g∑
j=1

ϕj)

= x((c/2) + 2g +

2g∑
j=1

yj) · γ = x((c/2) +

2g∑
j=1

yj) · γ.

– when ∈= n1, n2, n3, n4,

ξ3 = (xα+

g∑
j=1

yjθj) ∪

(x(c/2) + y)β + x
∑
εj=−1

ϕj


= x

(c/2) + y + #{j | εj = −1}+
∑
εj=−1

yj

 · γ
= x

(c/2) +
∑
εj=1

yj + #{j | εj = −1}

 · γ.
Case 2. ξ =

∑
yjθj , hence ξ2 =

∑
yjθ

2
j = 0 and ξ3 = 0.

Case 3. Letting zk = φ(sk), recall from the proof of Proposition 3.1 that
zk = 0 for k ≥ d, z0 =

∑
k>0 zk, and ξ =

∑
1≤k≤d−1 zkαk +

∑
yjθj ,

hence

ξ2 =
∑

1≤k≤d−1

zkα
2
k +

∑
yjθ

2
j

=
∑

1≤k≤d−1

zk(
a0
2
β0 +

ak
2
βk) + 0

=
a0
2

(
∑

1≤k≤d−1

zk)β0 +
∑

1≤k≤d−1

zk
ak
2
βk

=
a0
2
z0β0 +

∑
1≤k≤d−1

zk
ak
2
βk

=
∑

0≤k≤d−1

zk
ak
2
βk
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and

ξ3 = (
∑

1≤k≤d−1

zkαk +
∑

yjθj) ∪
∑

0≤k≤d−1

zk
ak
2
βk

= z0
a0
2

(
∑

1≤k≤d−1

zkαk) ∪ β0 +
∑

1≤k≤d−1

zk
ak
2
· γ

= z0
a0
2

(
∑

1≤k≤d−1

zk)γ +
∑

1≤k≤d−1

zk
ak
2
· γ

= z0
a0
2
γ +

∑
1≤k≤d−1

zk
ak
2
· γ

=
∑

0≤k≤d−1

zk
ak
2
· γ.

Using Proposition 4.2, we conclude:

Theorem 4.3. One has indZ2
(Mφ, τφ) = 3 if and only if

• either N satisfies Case 3 (i.e. d > 0) and
∑
φ(sk)=1 ak is not a

multiple of 4,

• or N satisfies Case 1 (i.e. d = 0 and c is even), and φ(h) = 1, and
the following element of Z2 is nonzero:

– when ∈= o1: c/2

– when ∈= o2, n1: (c/2) +
∑
φ(vj)

– when ∈= n2: (c/2) + g

– when ∈= n3: (c/2) + φ(v1) + g − 1

– when ∈= n4: (c/2) + φ(v1) + φ(v2) + g.

5 Remarks and examples

In this section we give a brief discussion of the class ξ2 and several
examples. The first few examples tend to involve relatively simple Seifert
manifolds for which the full machinery of the previous sections is not
strictly needed. The final two examples are more involved and the full
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machinery will be necessary. These examples cover three of the six possi-
ble Seifert manifold types, namely ∈= o1, n1, n3, as well as various Euler
numbers e and genus g′.

Proposition 5.1. (a) If indZ2
(M, τ) = 1, then ξ2 = 0.

(b) If indZ2
(M, τ) = 3, then ξ2 6= 0.

Proof. (a) Consider the Bockstein homomorphisms B : H1(N ;Z2) →
H2(N ;Z) and β = Sq1 : H1(N ;Z2) → H2(N ;Z2), and recall that
under the coefficient homomorphism ρ′ : H2(N ;Z) → H2(N ;Z2) one
has ρ′ ◦ B = β. From Theorem 2.1(i) we know indZ2

(M, τ) = 1 if and
only if ξ ∈ Im(ρ). Since Im(ρ) = Ker(B), the condition is equivalent to
B(ξ) = 0. And this implies 0 = Sq1(ξ) = ξ2.

(b) This is immediate from Theorem 2.1(ii).

Based on 5.1 (a), it is interesting to have examples where ξ2 = 0 and
where the indZ2

(M, τ) could equal 1 or equal 2. In fact such examples
are already considered in [7], Section 5, and we will recall them here.

Example 5.2.

(a) Let N = L(4, 1), and ξ ∈ H1(N ;Z2) ≈ Z2 be the generator.
Then indZ2

(M, τ) = 2 and ξ2 = 0.
(b) Let N = S1 × V , V being is any closed surface, and ξ = π∗(u),

where π : N � S1 is the projection and u generates H1(S1;Z2). Then
indZ2

(M, τ) = 1 and ξ2 = 0.
(c) As a special case of (b) let N = S1×RP 2, thenH1(N ;Z2) has the

generator u as in (b), and the additional generator x corresponding to the
(pull-back) of the generator of H1(RP 2;Z2). Now, in addition to ξ = u as
in (b), we have two further possible choices ξ = v or ξ = u+ v. For each
of these latter two choices we have indZ2

(M, τ) = 2 since ξ2 = v2 6= 0
and ξ3 = 0.

Of course, the conclusions in Example 5.2 as well as the following
Example 5.3 also follow easily from our main theorems. As an illustration,
in 5.2(a) we have L(4, 1) = {4; (o1, 0)} (cf. [15] 5.4(i)). Here a0 = 1, b0 =
4, whence d = 0, c = 4, and this implies we are in Case 1. By Theorem
4.1 the only non-zero element in H1(N ;Z2) is α, hence ξ = α. Again by
Theorem 4.1 we have α2 = (c/2)β = 0. Now applying Theorem 3.5 (first
case) and Theorem 4.3 (second case), we obtain that indZ2

(M, τ) = 2.
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We also remark that in 5.2(b) and 5.2(c) one has e = 0, and the type is
o1 if V is orientable, n1 if V is non-orientable.

Our next example illustrates to some extent the delicacy of the
Borsuk-Ulam situation. The example shows that one can have two dou-
ble covers of a Seifert manifold N by the same Seifert manifold M but
with different Z2-indices for (M, τ). Indeed the example already arises
at the level of surface topology.

Example 5.3.

Let N = RP 2#RP 2#RP 2, one has π1(N) =
〈v1, v2, v3|v21v22v23〉, H1(N ;Z2)
≈ Z3

2 with generators θ1, θ2, θ3 and H2(N ;Z2) ≈ Z2 with generator
β. Furthermore θ2i = β whereas θiθj = 0, i 6= j (cf. [8] Section 3.2).
The characteristic class ξ1 = θ2 + θ3 corresponds to the homomorphism
φ1 : π1(N) � Z2 given by φ1(v1) = 0, φ1(v2) = φ1(v3) = 1. Similarly
the characteristic class ξ2 = θ1 corresponds to φ2 : π1(N) � Z2 with
φ2(v1) = 1, φ2(v2) = φ2(v3) = 0. Using Proposition 4.2 of [7] we
obtain at once that indZ2 is 1 for ξ1 and 2 for ξ2 (this corresponds to
ξ21 = 0, ξ22 6= 0). The surface M that is the double cover of N must
have Euler characteristic χ(M) = 2χ(N) = −2. Since it is not hard to
see that in both cases M is non-orientable, it follows that in both cases
M = RP 2#RP 2#RP 2#RP 2.

By simply taking the product of M and N with S1, we obtain similar
examples with Seifert manifolds (where we take φi(h) = 0). Indeed,
writing N1 = N × S1, we have that N1 has ∈= n1, g′ = 3, and no
exceptional fibres whence d = c = 0. From 3.5, final case, we see that
φ1(v1)+φ1(v2)+φ1(v3) = 0 implies the Z2-index for φ1 equals 1, whereas
φ2(v1) + φ2(v2) + φ2(v3) = 1 implies the Z2 index for φ2 is 2 or 3. Since
ζ3 = 0 for any ζ ∈ H1(N1;Z2), the Z2-index of φ2 must be 2.

It should be noted, as was already done in Seifert’s original paper
[19], that the same 3-manifold (even S3) can often be fibred in different
ways, i.e. the Seifert “invariants" are not always true invariants in the
sense that they may not be unique. However the cohomology ring with
any coefficients, and fundamental group, are of course true invariants,
and the determination of the Z2-index is based upon these. We conclude
with a couple of deeper examples for which the techniques of Sections 3
and 4 must be utilized to answer the Borsuk-Ulam question.

Example 5.4.
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Let N be the Seifert manifold given by the following Seifert invariants:

N = {0, (n3, 2); (9, 4), (5, 2), (7, 2)}.

Then, a presentation of π1(N) is:

π1(N) =

〈s1, s2, s3
v1, v2
h

∣∣∣∣∣∣
[sk, h] (k = 1, 2, 3)
[v1, h], v2hv

−1
2 h

s91h
4, s52h

2, s73h
2, s1s2s3v

2
1v

2
2

〉
.

Note that d = 0 (since 9, 5, 7 are odd) and c is even (since 4, 2, 2
are even), hence we are in Case 1 of Notation 2.2. The following table
shows the values of all possible non-zero φ’s on the generators of π1(N),
as well as the corresponding cohomology class ξ ∈ H1(N ;Z2) under the
isomorphism (1). Also recall that here, by Theorem 4.1 (or Proposition
3.1), H1(N ;Z2) has generators α, θ1, θ2 with α = ĥ+4ŝ1 +2ŝ2 +2ŝ3 = ĥ,
and finally that ∈= n3 implies all φ(sj) = 0. The final column in the
table gives the Z2-index, in each case, of (Mi, τi) := (Mξi , τξi). The
proofs for the data in the table are given in Proposition 5.5 below.

φi s1 s2 s3 h v1 v2 ξi indZ2(Mi, τi)

φ1 0 0 0 1 0 0 α 3
φ2 0 0 0 1 1 0 α+ θ1 2
φ3 0 0 0 1 0 1 α+ θ2 3
φ4 0 0 0 1 1 1 α+ θ1 + θ2 2
φ5 0 0 0 0 1 0 θ1 2
φ6 0 0 0 0 0 1 θ2 2
φ7 0 0 0 0 1 1 θ1 + θ2 1

Proposition 5.5. • For ξ = ξ7 one has indZ2
(Mi, τi) = 1.

• For ξ = ξ2, ξ4, ξ5, ξ6 one has indZ2(Mi, τi) = 2.

• For ξ = ξ1, ξ3 one has indZ2(Mi, τi) = 3.

Proof. By Theorem 3.5, indZ2(Mi, τi) = 1 if and only if φ(h) = φ(v1 +
v2) = 0, i.e. φ = φ7. Moreover, N is in Case 1, ∈= n3, c is a multiple
of 4 and g = 2 hence, by Theorem 4.3, indZ2

(Mi, τi) = 3 if and only if
φ(h) = φ(v1) + 1 = 1, i.e. φ = φ1, φ3.
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Our concluding example has (in contrast to the previous examples)
non-zero Euler number, arbitrary genus g ≥ 0, and a relatively large
number (seven) of singular fibres.

Example 5.6.

Let Ng, g ≥ 0, be the Seifert manifold given by the Seifert invariants

{−2; (o1, g); (16, 5), (16, 1), (16, 1), (16, 1), (2, 1), (3, 2), (3, 1)}.

With the conventions given in Notation 2.2, a presentation of π1(N) is
(note that according to these conventions the singular fibres are reordered
so that s0 corresponds to (16, 5), s1 to (16, 1) . . ., s6 to (3, 1), and s7 to
(1, e) = (1,−2) :

π1(N) =

〈s0, s1, s2, s3, s4, s5, s6, s7
v1, v2, . . . , v2g−1, v2g

h

∣∣∣∣∣∣
[sk, h] and sakk h

bk , 0 ≤ k ≤ 7
[vj , h], 1 ≤ j ≤ 2g

s0 · · · s7[v1, v2] · · · [v2g−1, v2g]

〉
.

One easily checks that here a = 48, c = 0, d = 5, J = 4, whence
SN = {0, 1, 2, 3} and we are in Case 3 of Notation 2.2. As usual, φ denotes
any surjective homomorphism φ : π1(Ng) � Z2 and τ the corresponding
involution of the double cover M arising from φ. It is also readily seen
that φ(h) = φ(s5) = φ(s6) = φ(s7) and φ(s0) + φ(s1) + φ(s2) + φ(s3) +
φ(s4) = 0 are necessary conditions for φ to be a homomorphism.

Proposition 5.7. • indZ2
(M, τ) = 1 iff either Sφ = ∅ (in which

case φ(sk) = 0, 0 ≤ k ≤ 7, g ≥ 1, and φ(vj) = 1 for at least one
j), or Sφ = SN (in which case φ(s0) = φ(s1) = φ(s2) = φ(s3) = 1).

• indZ2
(M, τ) = 3 iff φ(s4) = 1 (whence also φ(s0)+φ(s1)+φ(s2)+

φ(s3) = 1).

• In all remaining cases indZ2
(M, τ) = 2.

Proof. By Theorem 3.5 we have indZ2(M, τ) > 1 if and only if d > 0 and
Sφ 6= ∅, SN . Since here d = 5, the negation of the previous sentence gives
the first statement of the proposition.

By Theorem 4.3 we have indZ2
(M, τ) = 3 if and only if d > 0 (which

is the case) and
∑
{ak : k ∈ Sφ} is not divisible by 4. We have already

observed that Sφ ⊆ {0, 1, 2, 3, 4} and furthermore a0 = a1 = a2 = a3 =
16, hence

∑
{ak : k ∈ Sφ} ≡ 2 ·φ(s4) (mod 4), and this gives the second

statement of the proposition. The third and final statement follows by
default.
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In the paper there are discussed approaches to the Ważewski retract
method on time scales. In particular there is presented planar case without
a restrictive assumption that the whole boundary of a set of constraints,
where we look for solutions, is a set of egress points. One example illus-
trating the main theorem is presented.

Introduction
In 1947 Tadeusz Ważewski (see [1]) gave a simple but excellent topo-

logical principle, now called the Ważewski retract method, which has
been used by many authors to prove the existence of solutions of a given
differential equation which remain in a prescribed set of constraints. In
particular, the method helps to find bounded solutions in several differen-
tial problems. It generalizes the direct method of Lyapunov and is based
on examining so-called ‘egress’ and ‘strict egress’ points on a boundary
of the set of constraints. It is worth noting that the set does not need to
be an attractor or repellor. It is sufficient to check that the set of egress
points, which is usually assumed to be equal to the set of strict egress
points, is not a retract or, more generally, strong deformation retract of
the whole set. This topological principle became a base and a motivation
for a construction of a very well known and useful topological invariant,
the Conley index (see, e.g., [2] for a comparison of these two topological
tools).

c© Sebastian Ruszkowski, 2013
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The Ważewski retract method was generalized and adopted to: dif-
ferential inclusions (see, e.g., [2] or [3] and references therein), difference
equations (e.g. [4, 5]) or, recently, dynamic equations on time scales
([6, 7, 8]). This last area of research has been intensively developed
since 90’s as a unification and generalization of the theory of difference
equations and differential equations, and has found applications in many
mathematical models in biology and physics, where discrete and con-
tinuous dynamics have to be studied simultaneously. Moreover, various
impulsive differential problems can be transformed to dynamic equations
on time scales.

While several results on dynamic equations on time scales are just sim-
ple transformations of continuous or discrete analogs, the ones concerning
qualitative theory are not. The results on the Ważewski topological prin-
ciple for dynamic equations on time scales are still not satisfactory. In
fact, the only cases explored enough are the ones where the set of con-
straints is negatively invariant (see [6, 7]).

When we drop the above simplification, we meet several essential prob-
lems. The main of them is to construct a retraction, which has to be a
continuous map, from an initial section Ωt0 of the tube of constraints
onto the t0-section Et0 of the set of egress points. We need a deep ge-
ometrical study to overcome this problems. The Shöenflies theorem, a
convexity and strict convexity play an important role in proofs of non-
whole boundary case (see [8]).

The paper is organized as follows. In section 2 we recall some infor-
mation on the calculus on time scales that will be useful in the sequel.
Section 3 shows topological ideas contained in [6] and [7]. Section 4
presents results from [8], where the positive or negative invariance as
well as a repulsivity of the set is not assumed anymore. One transparent
example is given to illustrate the results.

2 Preliminaries

2.1 Basics of a calculus on time scales

The interested reader can consult [9, 10] to get a complete introduction
or to find proofs of statements of this section.

A time scale is any closed subset of the set R of real numbers and we
denote it by T.
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Basic functions describing T are jump operators σ, ρ :T→ T i µ :T→
R, defined as follows:

• σ(t) = inf{s ∈ T : s > t} (forward jump operator)

• ρ(t) = sup{s ∈ T : s < t} (backward jump operator)

• µ(t) = σ(t)− t (graininess function)

where we assume: inf ∅ = sup T and sup ∅ = inf T.

Proposition 2.1 (Induction Principle). Let t0 ∈ T and assume that
{S(t) : t ∈ [t0,∞) ∩ T} is a family of statements satisfying:

• The statemnt S(t0) is true.

• If t ∈ [t0,∞) ∩ T is right-scattered and S(t) is true for all s ∈
[t0, t) ∩ T, then S(σ(t)) is also true.

• If t ∈ [t0,∞) ∩ T is right-dense and S(t) is true, then there is a
neighborhood U of t such that S(s) is true for all s ∈ U ∩(t,∞)∩T.

• If t ∈ (t0,∞)∩T is left-dense and S(s) is true for all s ∈ [t0, t)∩T,
then S(t) is true.

Then S(t) is true for all t ∈ [t0,∞) ∩ T.

Definition 2.2. ∆-derivative of a function f : T→ X in a point t, where
X is a linear normed space, is the point f∆(t) ∈ X (if it exists) such that:

∀ε>0 ∃δ>0 ∀s∈B(t,δ)∩T ‖f(σ(t))− f(s)− f∆(t)(σ(t)− s)‖ ≤ ε|σ(t)− s|

Proposition 2.3. If a function f is continuous in t and:

• t = σ(t), then: f∆(t) = lims→t
f(t)−f(s)

t−s

• t 6= σ(t), then: f∆(t) = f(σ(t))−f(t)
µ(t)

• in general, for t ∈ Tκ we have

f∆(t) = lim
s→t T

f(σ(t))− f(s)

σ(t)− s

where Tκ is the set T without the point maxT if this point exists
and is isolated.
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2.2 ∆-differential equations
Definition 2.4. By a local solution of a system of equations:{

x∆(t) = f(t, x(t))
x(t0) = x0

(1)

we will mean a continuous function x :T∩ (a, b)→ X such that a < ρ(t0),
b > σ(t0), x(t0) = x0 and for all t ∈ Tκ∩(a, b) equation x∆(t) = f(t, x(t))
is fulfilled.

Definition 2.5. A solution x2 is an extension of a solution x1, if x1

and x2 are local solutions of the same system of equations, Dom(x2) (
Dom(x1) and x2|Dom(x1) = x1 .

If we cannot extend a local solution, then we call it a global solution.

Proposition 2.6. If for all t0 ∈ Tκ and x0 ∈ X there exists a unique
local solution of system (1), then for all t0 ∈ Tκ and x0 ∈ X there exists
a unique global solution of the same equation x : T ∩ (a, b) → X, where
µ(a) = 0 or a = −∞, and b− ρ(b) = 0 or b =∞.

In analogy to standard local processes on R we can define a local
∆-process. We have then a formal definition:

Definition 2.7. A continuous function Π:M → X (where M ⊂ X×T2)
is a local ∆-process if:

P1 ∀x∈X,t∈T∃α<t<β (µ(α) = 0 ∨ α = −∞) ∧ (β−ρ(β) = 0 ∨ β =∞) ∧
∧ {s ∈ T ; (x, t, s) ∈M} = (α, β) ∩ T,

P2 ∀x∈X,t∈T Π(x, t, t) = x,

P3 ∀(x,t,s),(x,t,r)∈M (Π(x, t, s), s, r) ∈M ∧ Π(Π(x, t, s), s, r) = Π(x, t, r).

Definition 2.8. We say that an equation x∆(t) = f(t, x(t)) generates a
local ∆-process Π, if for all x0 ∈ X and t0 ∈ T a function Π(x0, t0, ·) is a
global and unique solution of (1) and Π is a local ∆-process.

Analogously as processes on R, a ∆-process induce homeomorphisms
along trajectories:

There is also possibility of understanding a solution as a function that fulfills the
equation x∆(t) = f(t, x(t)) T-almost everywhere (that concept had been introduced in
[11]). If we accept this definition the next part of this paper needs only nonsignificant
changes.
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Proposition 2.9. If an equation x∆(t) = f(t, x(t)) generates a local
∆-process Π, and if all solutions of the problem{

x∆(t) = f(t, x(t))
x(t0) ∈ A

exist in time t1, then Π(·, t0, t1)|A is a homeomorphism between A and
its image.

Proof. Π is continuous so Π(·, t0, t1) and Π(·, t1, t0) are continuous on
theirs domains which implies what was to prove.

We will need the preservation of orientation by Π. Below we show a
simple theorem which gives an example of a class of functions implying
that property.

Definition 2.10. A function f : T × X → X is rd-continuous if it is
continuous in all t ∈ T such that µ(t) = 0, that is in so-called right dense
points (this justifies "rd" in the name).

Proposition 2.11. Let f : T×Rn → Rn be rd-continuous and Lipschitz
continuous (with Lipschitz constant L(t)) with respect to the second vari-
able. If for all t ∈ T inequality L(t)µ(t) < 1 is fulfilled, then an equation
x∆(t) = f(t, x(t)) generates a local ∆-process Π and for all t ∈ T we have
that function Π(·, t, σ(t)) preserves an orientation of Rn.

Proof. An equation x∆(t) = f(t, x(t)) has a global and unique solution
(see [9, p.322, 324]) with a continuous dependence on the initial condi-
tions, so this equation generates a local ∆-process Π. Moreover:

Π(x, t, σ(t))−Π(0, t, σ(t)) = x+ µ(t)f(t, x)− (0 + µ(t)f(t, 0)) =

= x+ µ(t)(f(t, x)− f(t, 0))

so, by L(t)µ(t) < 1, for x 6= 0 we have:

〈Π(x, t, σ(t))−Π(0, t, σ(t)), x〉 > 0

which means that vectors Π(x, t, σ(t))−Π(0, t, σ(t)) and x are in the same
halfspace, so Π(·, t, σ(t)) preserves an orientation of Rn.
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3 Ważewski method for the whole boundary
egress set

There are shown two approaches to basic Ważewski Theorem in this
chapter, which means: the case of set Ω, for which all trajectories starting
from the boundary immediately leaves that set. In this section we assume,
that X = Rn.

3.1 Approach 1.
If local ∆-process Π generated by ∆-equation is not well defined in

(x, t0, t1), it means, that solution starting in (x, t0) reaches to boundary
of Rn - infinity (one point compactification of Rn). This observation leads
to convenient notation for points (x, t0, t1) outside of the domain of local
∆-process Π: Π(x, t0, t1) :=∞.

We will use a function of positively closest point of change of interval
charakter of T.

Definition 3.1. Essential forward jump operator is a function essσ :T→
T ∪ supT with formula:

essσ(t) := inf{s ∈ T ; s > t ∧ (µ(s) > 0 ∨ µ(t) > 0)}.

Let Ω̃ be closed subset of R × Rn, such that for each r ∈ R the set
Ω̃r := {x ∈ Rn ; (r, x) ∈ Ω̃} is nonempty and bounded, ∂(Ω̃r) is not a re-
trakt of Ω̃r and {r} × ∂(Ω̃r) is a retrakt of ∂(Ω̃). We will use curtailment
of Ω̃ to the time scale T:

Ω :=
⋃
t∈T
{t} × Ω̃t.

Theorem 3.2. For above set Ω and equation x∆(t) = f(t, x(t)), which
generates local ∆-process Π, if for all t ∈ T and for all s ∈ (t, essσ(t)]
we have Π(cl(Ωc)t, t, s) ⊂ (Ωs)

c() then for each t0 ∈ T there exists point
x0 ∈ Ωt0 , such that the solution starting from (t0, x0) remain in Ω for
every t ∈ T bigger than t0.

Similar theorem is proved in [7], but they are focused on simple time scales (with
values of grainies function equal 0 or bigger than ε), and then using inverse systems
and analitic means, they obtain general case.

This condition means that starting from the outside of set Ω there is no trajektory
such that enters set Ω up to time of essential forward jump of starting time, which
means that the whole boundary of Ω is a set of egress points in a specyfic sens.
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Proof. We will prove by induction principle for time scales (Proposition
2.1), that Π(Ωt, t, s) ⊂ Ωs for s, t ∈ T where s 6 t.

Obviously Π(Ωt, t, t) = Ωt.
We have essσ(t) = σ(t) for right-scattered points, therefor:

Π(cl(Ωc)t, t, σ(t)) ∈ (Ωσ(t))
c, so Π(Ωσ(t), σ(t), t) ⊂ Ωt.

For points t in compact interval in time scale, that are not right bound-
ery of that interval we have that essσ(t) is right boundery of that interval.
In particular we have essσ(t) − t > ε > 0, so for s ∈ (t, t + ε) we have
Π(Ωt, t, s) ⊂ Ωs.

For other right-dense points t we know that ther exists sequence (tn) ⊂
T diminishing to t such that µ(tn) > 0 for all n, for which we have
Π(Ωσ(tn), σ(tn), tn) ⊂ Ωtn , so by continuity of Π we find ε > 0 such that
for s ∈ (t, t+ ε) ∩ T we have Π(Ωt, t, s) ⊂ Ωs.

For left-dense points we obtain needed property also by continuity.
By induction we have Π(Ωt, t, s) ⊂ Ωs for s, t ∈ T where s 6 t.
Let us fix t0 ∈ T. We can choose sequence (tn)n=0..∞ ⊂ T increasing

to supT and define (Ωn)n=1..∞ by:

Ωn := Π(Ωtn , tn, t0).

We know, that:

Ωn+1 = Π(Π(Ωtn+1 , tn+1, tn), tn, t0) ⊂ Ωn,

therefore (Ωn)n=1..∞ is descending family of compact sets. Intersec-
tion of descending family of nonemty compact sets is nonempty and we
choose x0 in that intersection. We now know, that trajektory starting
in (t0, x0) is in Ω up to any time tn, and tn → supT, so this is the
searched trajektory.

3.2 Approach 2.

Let bi, ci : T → R (for i = 1..n) be ∆-differentiable functions where
bi < ci. We define Ω using that functions:

Ω := {(t, x) ∈ T× Rn ; bi(t) 6 xi 6 ci(t) for all i}

and we will use notoation:
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∂TΩ := {(t, x) ∈ T× Rn ; bi(t) 6 xi 6 ci(t) for all i
wherein at least one inequality is equality}.

All points p ∈ ∂TΩ can be presented in one of the following ways:

p = (t, x1, ..., xi−1, bi(t), xi+1, ..., xn) ∈ Ωib

or
p = (t, x1, ..., xi−1, ci(t), xi+1, ..., xn) ∈ Ωic.

Theorem 3.3. Let bi, ci :T→ R be ∆-differentiable and f :T×Rn → Rn
generates local ∆-process Π. If for all (t, x) ∈ Ωib we have f(t, x) < b∆i (t)
and for all (t, x) ∈ Ωic we have f(t, x) > c∆i (t) then for each t0 ∈ T there
exists x0 ∈ Ωt0 , such that solution starting in (t0, x0) remains in Ω for
every t ∈ T bigger than t0.

Proof. (ad absurdum)
Let us notice, that for (t, x) ∈ Ωib, where µ(t) > 0, we have

Π(x, t, σ(t)) = x +
∫ σ(t)

t
f(τ, x)∆τ < x +

∫ σ(t)

t
b∆i (τ)∆τ = bi(σ(t)), and

similarly for µ(t) = 0 we have Π(x, t, t + ε) = x +
∫ t+ε
t

f(τ, x)∆τ <

x +
∫ t+ε
t

b∆i (τ)∆τ = bi(t + ε), which means that trajectories starting
in Ωib immiedietly leaves set Ω. By analogy, trajectories starting in Ωic
also immiedietly leaves set Ω.

Let us fix t0 ∈ T. We extend linearly Ω to continuous tube on
[t0, supT] ∩ R:

Ω∗ := Ω ∪ {(t, x) ∈ ([t0, supT] ∩ R \ T)× Rn ;

bi(ta) + (bi(tb)− bi(ta))
t− ta
tb − ta

6 xi 6 ci(ta) + (ci(tb)− ci(ta))
t− ta
tb − ta

for all i}
where ta, tb ∈ T are such that ta < t < tb and (ta, tb) ∩ T = ∅.
Naturally, for above ta and tb we know that set Ω∗[ta,tb] is convex.
Note that r :∂Ω∗ → {t0} × ∂Ωt0

r(t, x) := (t0, (bi(t0) +
ci(t0)− bi(t0)

ci(t)− bi(t)
(xi − bi(t)))i=1..n)

This is Theorem from [6], with assumptions given in the the language of ∆-
processes.
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is a retraction.
Now we will find continuous function from the set Ωt0 to the boundary

of Ω∗.
Negation of the thesis means that for all x ∈ Ωt0 we have finite time

of exit
te(x) := sup{t ∈ T ; ∀s∈T∩[t0,t](t,Π(x, t0, t)) ∈ Ω} < supT.

If µ(te(x)) = 0, then (te(x),Π(x, t0, te(x))) is in boundary of Ω∗.
If µ(te(x)) 6= 0, then (te(x),Π(x, t0, te(x))) ∈ Ω and

(σ(te(x)),Π(, t0, σ(te(x)))) /∈ Ω and by convexity of Ω∗[te(x),σ(te(x))] we ob-
tain unique intersection of Ω∗[te(x),σ(te(x))] with interval connecting points
(te(x),Π(x, t0, te(x))) and (σ(te(x)),Π(x, t0, σ(te(x)))). Denote this point
by (t∗e(x), x∗e).

Therefore, we can define function p :Ωt0 → ∂Ω∗:

p(x) :=

{
(te(x),Π(x, t0, te(x))), gdy µ(te(x)) = 0
(t∗e(x), x∗e), gdy µ(te(x)) > 0.

By continuities of Π and tube Ω∗ we have continuous dependence
(t∗e(x), x∗e) and (te(x),Π(x, t0, te(x))) in respect to x. It is enough to show
continuous dependence beetwen (t∗e(x), x∗e) and (te(x),Π(x, t0, te(x))).

For point x0 such that te(x0) is left-dense and right-scatered and
(te(x0),Π(x0, t0, te(x0))) ∈ Ω we have p(x) → p(x0) for x → x0 with
the time of exit te(x) < te(x0), and p(x) → p(x0) for x → x0 with the
time of exit te(x) = te(x0). By continuity of Π we can choose small
enough neighborhood of x0, which do not contains another points, so p
is continuous in x0.

By analogy, for left-scattered and rigth-dense points te(x0) we obtain
continuity of p in such points. Therefore p is continuous.

Note that function R :{t0} × Ωt0 → {t0} × ∂Ωt0

R(t0, x) := r(p(x))

is a composition of continuous functions, so it is a retraction, which is in
contradiction with the construction of set Ω.

4 Ważewski method for non-whole boundary
egress set

In this section there are presented results from [8].
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4.1 Notation

Let B(x, r) denote an open ball centered in x ∈ R2 and with a radius
r, D(x, r) = clB(x, r), S(x, r) = ∂B(x, r) and S1 := S(0, 1).

Proposition 4.1 (Shöenflies theorem). Any homeomorphism h : S1 →
h(S1) ⊂ R2 can be extended to a homeomorphism h̃ : R2 → R2.

In particular, for any homeomorphism h : S1 → h(S1) ⊂ R2 there
exists a homeomorphism ĥ : D(0, 1)→ ĥ(D(0, 1)) ⊂ R2 such that the set
ĥ(S1) is a boundary of ĥ(D(0, 1)) and the equality h(x) = ĥ(x) holds for
all x ∈ S1.

Let A ⊂ T× R2. Then we define:

At := {x ∈ R2 ; (t, x) ∈ A}.

Let Θ : T× S1 → R2 be a continuous function such that:

• Θt : S1 → Θt(S
1) ⊂ R2, where Θt(x) = Θ(t, x), is a homeomor-

phism,

• Θ(t, s) = Θ(σ(t), s).

For all t ∈ T let Ωt be a closure of a bounded open set surrounded by
the curve Θ(t, S1) and

Ω :=
⋃
t∈T
{t} × Ωt.

For such construction we will say that Ω is Θ-bounded. In particular Ω
can be a constant tube Ω = T×Ω0, where Ω0 is homeomorphic to D(0, 1).

We consider the following parts of the set Ω:

∂TΩ := Θ(T× S1) =
⋃
t∈T
{t} × ∂(Ωt)

∂TΩ+ :=
⋃
t∈T
{t}×cl{x ∈ R2 ; (t, x) ∈ ∂TΩ∧∃r>0∀y∈B(x,r)∩Ωt∀λ∈(0,1) λx+

+(1− λ)y ∈ intΩ}

It is a well kown property of planes, which is presented for example in [12, pp.
68,72].
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In other words, (∂TΩ+)t is a closure of the set of points in ∂(Ωt) that
have strictly convex neighborhoods in Ωt.

For any maps f :T× R2 → R2 and g :R2 → R2 we define where it
makes sense:

ft(x) := f(t, x),
Φg(·, ·), a local flow generated by the equation y′ = g(y)
wg(x), a duration of a solution in a local flow Φg started in x

We focus our attention at the following subsets of Ω:

• Set of egress points:

E :={(t, x) ∈ ∂TΩ ; y′ = ft(y) generates a local flow Φft

and Φft(x, (0, s]) 6⊂ Ωt for any s ∈ (0, wft(x))}

• Set of escape points:

Es := {(t, x) ∈ Ω ; µ(t) 6= 0 and x+ µ(t)f(t, x) 6∈ intΩσ(t)}

4.2 Theorems
Now we will prove the main theorem of the paper.

Theorem 4.2. Let f : T× R2 → R2 be a map such that:

(H0) equation x∆(t) = f(t, x(t)) generates a local ∆-process Π,

(H1) for all t ∈ T a function Π(·, t, σ(t)) preserves an orientation of R2,

(H2) Ω is Θ-bounded (see section 4.1),

(H3) there exists a closed set W ( S1 such that W is not a retract of
D(0, 1) and Θ(T×W ) = E,

(H4) if µ(t) 6= 0, then

(H4a) Π(Et, t, σ(t)) ∩ Ωσ(t) = ∅,
(H4b) Π(intΩt, t, σ(t)) ∩ ∂TΩσ(t) ⊂ Eσ(t).

Then, for all t0 ∈ T, there exists a point x0 ∈ Ωt0 such that the solution
starting in (t0, x0) remains in Ω for all t ∈ T bigger than t0.
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Proof. (ad absurdum)
Let us fix for a while point t ∈ T such that µ(t) 6= 0.
By assumption (H4a), we know that Et ⊂ Est.
By definition of Es we also know that Π(Eσ(t), σ(t), t)∩Ωt ⊂ ∂(Est).
By assumptions (H2) and (H3) we know that Ωt = Ωσ(t) and Et =

Eσ(t). This allows us to define the following continuous tube:

Ẽ = {(s, x) ∈ R× R2 ; (sup{t ∈ T ; t < s}, x) ∈ E}.

In other words we fill the interstices caused by a time scale.
We will construct a continuous function wt :Est → [t, σ(t)]× Et ⊂ Ẽ

such that:

w1 ∀x∈Et wt(x) = (t, x)

w2 ∀x∈Π(Eσ(t),σ(t),t)∩Ωt wt(x) = (σ(t),Π(x, t, σ(t)))

which we will use to construct a continuous function from Ωt0 to Ẽ
and by that, a retraction from D(0, 1) to W .

Let I be the set of indices of connected components Eit of Π(Et, t, σ(t))
By assumption (H4a) we know that each set Eit is contained in a corre-
sponding connected component γi of Π(∂TΩt, t, σ(t)) \ ∂TΩt. The curve
γi cuts from cl(Ωct) a closed bounded connected set denoted by Esit.

Figure 1

By assumption (H3) we know that Et 6= ∂TΩt so a boundary of Esit is
a closed curve and a sum of four curves: θ1

i , Eit , θ2
i and ∂TΩ ∩Esit (each

of them homeomorphic to line segments), so it is homeomorphic to S1

(see Figure 1). By assumption (H1) the sets ∂TΩt and Π(∂TΩt, t, σ(t))
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have the same orientation, and therefore Eit and ∂TΩ ∩ Esit have an op-
posite orientation on the boundary of Esit, so we can parameterize that
boundary to obtain a homeomorphism hi :∂Ti → ∂(Esit) such that:

• Ti is a trapezoid with vertices (0, 0), (1, 0), (ai, 1), (bi, 1) where
[ai, bi] ⊂ [0, 1], ,

• hi([0, 1], 0) = Eit ,

• hi([ai, bi], 1) = ∂TΩt ∩ Esit,

• ∀x∈[ai,bi]hi(x, 0) = Π(hi(x, 1), t, σ(t)).

By the Shöenflies theorem we can extend hi to a homeomorphism
ĥi : Ti → Esit. If Π(Est, t, σ(t)) \

⋃
i∈I Es

i
t 6= ∅, then with other con-

Est
4 denotes ΩtEst

1

Est
2

Est

Est
3

Est

denotes image 

of Ωt by Π(·, t, σ(t))

denotes Et

I = {1,2,3}

J = {4}

Figure 2

nected components (indexed with elements of some set J) we make sim-
ilar sets Esjt , each of them bounded by a part of ∂(Ωt) and a part of
Π(∂(Ωt), t, σ(t)), so bounded by a curve homeomorphic to S1 (see Figure
2). Then we have a homeomorphism hj :∂Tj → ∂(Esjt ) such that:

• Tj is a triangle with vertices (1/2, 1/2), (0, 1), (1, 1),

• hj([0, 1], 1) = ∂TΩt ∩ Esjt .

and again by the Shöenflies theorem we can extend hj to a homeomor-
phism ĥj :Tj → Esjt .

With that construction θ1
i and θ2

i are the images of the side edges of Ti.
In that construction point hj(1/2, 1/2) is free to choose.



Sebastian Ruszkowski 203

Now we know that Π(Est, t, σ(t)) ⊂
⋃
i∈I Es

i
t∪
⋃
j∈J Es

j
t which is the

sum of disjoint sets, therefore we can define wt :Est → [t, σ(t)]×Et ⊂ Ẽ,

wt(x) :=



(t+ µ(t)p2(·),Π(ĥi(p1(·), 0), σ(t), t))(ĥi
−1

(Π(x, t, σ(t)))),
Π(x, t, σ(t)) ∈ Esit (i ∈ I)

(t+ µ(t)p2(·),Π(ĥi(p1(·), 1), σ(t), t))(ĥi
−1

(Π(x, t, σ(t)))),

Π(x, t, σ(t)) ∈ Esjt (j ∈ J)
(σ(t),Π(x, t, σ(t)))

Π(x, t, σ(t)) ∈ Eσ(t)

where p1 and p2 are projections respectively onto the first and second
variables. By construction it is a continuous function.

Notice that for x ∈ Et there exists a unique i ∈ I such that
Π(x, t, σ(t)) ∈ Eit , and consequently y := ĥ−1

i (Π(x, t, σ(t))) ∈ [0, 1] ×
{0}. Since p1(y) = y and p2(y) = 0, we obtain that wt(x) =

(t,Π(ĥi(y), σ(t), t)) = (t, x). Hence property w1 is satisfied.
Moreover, if x ∈ Π(Eσ(t), σ(t), t) ∩ Ωt, then Π(x, t, σ(t)) ∈ Eσ(t), so

also property w2 is fulfilled.
Falsity of thesis means that for every x ∈ Ωt0 we have:
te(x) := sup{t ∈ T ; ∀s∈T∪[t0,t](t,Π(x, t0, t)) ∈ Ω} < supT.
If µ(te(x)) = 0, then (te(x),Π(x, t0, te(x))) is already in E ⊂ Ẽ.
If µ(te(x)) 6= 0, then (te(x),Π(x, t0, te(x))) ∈ Ω and

(σ(te(x)),Π(x, t0, σ(te(x))) 6∈ Ω. So we can use the function wte(x) to
it.

Therefore, we can define r :Ωt0 → Ẽ,

r(x) :=

{
(te(x),Π(x, t0, te(x))), if µ(te(x)) = 0,
wte(x)(Π(x, t0, te(x))), if µ(te(x)) 6= 0.

Take any point x such that µ(te(x)) = 0.
Then for each ε > 0 there exists τ ∈ T such that 0 < τ − t0 < ε and

Π(x, t0, τ) 6∈ Ωτ so, by the continuity of Π, for each ε > 0 there exist
δ > 0 and τ ∈ T such that 0 < τ − t0 < ε and Π(B(x, δ), t0, τ) ∩ Ωτ = ∅.

Therefore
∀ε>0∃δ>0∀y∈B(x,δ) te(y) < te(x) + ε.

Similarly we show that for each point x such that te(x)−ρ(te(x)) = 0
we have
∀ε>0∃δ>0∀y∈B(x,δ) te(y) > te(x)− ε.
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Using a continuity of Π we get a continuity of r in all x such that te(x)
is a dense point of T. Furthermore, properties w1 and w2 guarantee a
continuity of r in every point x such that µ(te(x)) 6= 0 or te(x)−ρ(te(x)) 6=
0.

Hence r is continuous for all points in Ωt0 .
By the Shöenflies theorem we can extend Θt to Θ̂t :D(0, 1) → Ωt for

every t ∈ T. Using this we define a map R :D(0, 1)→W :

R(y) := Θ−1

te(Θ̂t0 (y))
◦ p2 ◦ r(Θ̂t0(y)).

For all y ∈ W we have R(y) = Θ−1
t0 p2r(Θt0(y)) =

Θ−1
t0 (Π(Θt0(y), t0, t0)) = y and, by the continuity of r, we get that

R is a retraction, what contradicts assumption (H3).

The geometric assumption (H4’) in the next theorem corresponds to
the assumption (H4) and may occure to be easier to check.

Theorem 4.3. Assume that:

(H0) equation x∆(t) = f(t, x(t)) generates a local ∆-process Π,

(H1) for all t ∈ T a function Π(·, t, σ(t)) preserves an orientation of R2,

(H2) Ω is Θ-bounded,

(H3’) there exists a closed set W ( S1 such that W is not a retract of
D(0, 1) and Θ(T×W ) = ∂TΩ+ = E,

(H4’) if µ(t) 6= 0, then Ωt ⊂ x + TΩt(x) for all x ∈ int∂TΩtEt, where
TΩt(x) is a Bouligand tangent cone of the set Ωt ∈ R2 in a point x
(TK(x) = {v ∈ X ; lim infh→0+

d(x+hv,K)
h = 0}).

Then, for all t0 ∈ T, there exists a point x0 ∈ Ωt0 such that a solution
starting in (t0, x0) remains in Ω for all t ∈ T bigger than t0.

Proof. To use Theorem 4.2 it is sufficient to show that, if µ(t) 6= 0, then
Π(Et, t, σ(t)) ∩ Ωσ(t) = ∅ and Π(intΩt, t, σ(t)) ∩ ∂TΩσ(t) ⊂ Eσ(t).

Let us fix t ∈ T such that µ(t) 6= 0.
We have that Π(x, t, σ(t)) = x+ µ(t)ft(x) and, for all x ∈ Et, vectors

ft(x) are directed outside the set Ωt so a local strict convexity of points
in Et (assumption (H3’)) guarantees that each connected component Et,i
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of Et has no common points with Π(Et,i, t, σ(t)). Moreover, assumption
(H4’) ensures that the set Π(Et,i, t, σ(t)) is outside of the rest of Ωσ(t),
so the first part is fulfilled.

A connected component It,i of ∂TΩt \ Et has only points without
strictly convex neighborhoods in Ωt. All of that points are not egress
points in a local flow, so ft(x) are directed inside the set Ωt. If there
were y ∈ It,i ∩Π(It,i, σ(t), t) and [y,Π(y, t, σ(t))] 6⊂ ∂TΩt, then It,i would
be a part of a spiral shaped curve which end is a beginning of a part of
Et, which would contradict assumption (H4’). Therefore there exists a
small enough neighborhood Ot,i of It,i such that an image of Ot,i ∩ intΩt
has no common points with It,i.

∂TΩt is homeomorphic to Π(∂TΩt, t, σ(t)) so, if Et,i borders on It,j ,
then their images have to border as well. Therefore an image of It,j cuts
out subset Ωjt of Ωt that contains It,j . Moreover the image of ∂TΩt does
not have selfintersections so, in particular, an image of It,j is the only
part of the image of Ωt that can have common points with Ωjt . It means
that

Π(intΩt, t, σ(t)) ∩ (∂TΩσ(t) \ Eσ(t)) = ∅

what was needed to prove.

Example 4.4. Let T =
⋃
n∈N [2n, 2n + 1] and f(t, (x, y)) =(

e−t(1−|y| sin(tπ))−2x
3 , 2y+sin x

5

)
. We are interested in existence of trajec-

tory convergent to (0, 0).
We will want to use Theorem 4.2 taking Ω :=

⋃
n∈N

⋃
t∈[2n,2n+1] {t}×

{(x1, x2) ∈ R2 ; −e(n−t)/3 6 xi 6 e(n−t)/3}.
Firstly, for t = 2n+ 1 and x1, x2, y1, y2 ∈ R we have

‖f(t, (x1, y1))− f(t, (x2, y2))‖ =

= ‖(2(x2 − x1)/3, (2(y1 − y2) + sin(x1)− sin(x2))/5)‖ ≤

≤ ‖(2/3, 3/5)‖ ‖(x1 − x2, y1 − y2)‖ < ‖(x1, y1)− (x2, y2)‖,

therefor we have L(t)µ(t) < 1, so assumptions of Proposition 2.11 are
met.

The set Ω is selected so that Ωt = Ωσ(t) and is Θ-bounded, where
Θ(t, (x, y)) = e(n−t)/3

sup{|x|,|y|} (x, y), for t ∈ [2n, 2n+ 1].
We will find E.
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For all t ∈ [2n, 2n + 1] and −e(n−t)/3 ≤ x ≤ e(n−t)/3 = |y| we have
(t, (x, y)) ∈ ∂TΩ and | sin(x)| < |y|, therefore these are the egress points.
Whereas for each t ∈ [2n, 2n + 1] i −e(n−t)/3 < y < e(n−t)/3 = |x| we
have (t, (x, y)) ∈ ∂TΩ and |e−t(1 − |y| sin(tπ))| 6 e−t < e(n−t)/3 = |x|,
therefore vectors f(t, (x, y)) areare directed to the center of set Ωt and∣∣∣ e−t(1−|y| sin(tπ))−2x

3

∣∣∣ > | 13x| = | ddte
(n−t)/3|, thus these points are entry

points.
For t = 2n+1 i (x, y) ∈ Et we have Π((x, y), t, σ(t)) = (x+ e−t−2x

3 , y+
2y+sin(x)

5 ) /∈ Ωσ(t), so the assumption (H4a) is met.
For t = 2n + 1 i (x, y) ∈ Ωt we have similarly: Π((x, y), t, σ(t)) =

(x + e−t/3−2x
3 , y + 2y+sin(x)

5 ), therefore the first coordinate is inside the
segment [ e

−t/3−en/3−t/3
3 , e

−t/3+en/3−t/3

3 ], which means that there are no
common points with ∂TΩt \ Et, so assumption (H4b) is met too.

All assumptions are satisfied, therefore there exists trajectory remain-
ing in the set Ω, which is convergent to (0, 0) (from the selection of the
set Ω).

4.3 Remarks

At first we notice that holes homeomorphic to balls in Ωt are avail-
able in Theorem 4.2. Indeed, for n holes we can consider: Θ :
T ×

⊕n
j=0 S

1 → R2 such that Θ({t} ×
⊕n

k=0 S
1) is homeomorphic to

S(0, 1) ∪
⋃n
k=1 S((0, (k − 1)/n), 1/3n)).

In the second remark we observe that properties of a local ∆-process
Π are essential, not of f itself, so in all approaches we can change our
understanding of a solution of x∆(t) = f(t, x(t)) and treat it as a function
that fulfills the equation T-almost everywhere (in a Sobolev space on a
time scale). Moreover, we can change assumptions to a T-almost every-
where form. It is important when we look for possible generalizations to
differential inclusions or multivalued ∆-processes.

A proof technique presented in Section 4 cannot be repeated in higher
dimensions because the Shöenflies theorem does not raise up to them.
The following open problem appears:

That concept had been introduced in [11].
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Open problem:
Is it possible to use in higher dimensional spaces the geometric idea

presented in the proof of Theorem 4.2 under some additional restrictions
to Θ or Π?

Nevertheless, this geometric idea opens new perspectives in the
Ważewski retract method on time scales and allows us to study more
classes of systems (for example hyperbolic systems).
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Ann. Soc. Polon. Math. 20 (1947), 279-313.
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208 Ważewski retract method

[9] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An
Introduction with Applications, Birkhäuser, Boston, 2001.
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In the paper “Weak local Nash equilibrium” we define a concept of local
equilibrium to non-cooperative games and we prove its existence applying
the Lefschetz fixed point theorem. We was inspired by the original Nash’s
theorem and his proof.

1 Introduction

In the paper “Weak local Nash equilibrium” we define a concept of
local equilibrium to non-cooperative games and we prove its existence
applying the Lefschetz fixed point theorem. We was inspired by the
original Nash’s theorem and his proof.

The concept of Nash equilibrium says that an equilibrium for payoff
functions

p1, p2, . . . , pn : S = S1 × S2 × · · · × Sn → R

is a point s̃ = (s̃1, s̃2, . . . , s̃n) ∈ S such that, for each i ∈ {1, 2, . . . , n},

pi(s̃1, . . . , s̃i−1, si, s̃i+1, . . . , s̃n) ≤ pi(s̃), for all si ∈ Si.

Nash proved that:

Theorem 1.1 (Nash’s Theorem). Let S1, . . . , Sn be compact convex sub-
sets of an Euclidean space. Suppose that p1, . . . , pn : S = S1×· · ·×Sn →
R are maps such that, for each i = 1, . . . , n, pi(s1, . . . , sn) is linear
(afim) as a function of si. Then there exists at least one equilibrium
to p1, . . . , pn.

c© Carlos Biasi , Tháis F. M. Monis , 2013
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The proof is the following: let Si ⊂ Rdi , where di is the dimension of
Si. Thus, S ⊂ Rd, where d = d1 + · · · + dn. From the hypothesis, the
payoff functions are of the type

pi(s) = vi(s) · si + ui(s)

where vi : S → Rdi and ui : S → R are maps which don’t depend on the
coordinate si, i = 1, . . . , n. Let v : S → Rd be the vector field defined
by v(s) = (v1(s), . . . , vn(s)). Let r : Rn → S be the natural retraction
that assigns each point p ∈ Rn to the point r(p) ∈ S which realizes the
distance of p to S. Finally, let f : S → S be defined by f(s) = r(s+v(s)).
Then, one can shown that s̃ ∈ S is a Nash equilibrium to p1, . . . , pn if
and only if s̃ is a fixed point of f . Note that the existence of a fixed point
to f is assured by Brouwer’s fixed point theorem.

Based on the above proof, we investigated the existence of equilib-
rium in the context that the spaces of strategies are compact ENR’s, not
necessarily convex. This means that each space Si is a subset of some eu-
clidean space Rdi and there is an open neighborhood Vi of Si in Rdi and
a retraction ri : Vi → Si. From this research, the following definitions
arise.

Definition 1. Let (S1, d1), . . . , (Sn, dn) be metric spaces and p1, . . . , pn :
S1 × · · · × Sn → R real functions. We say that s̃ = (s̃1, . . . , s̃n) ∈ S is
a weak local equilibrium (abbrev., w.l.e.) for p1, . . . , pn if for all
ε > 0 there exists δ > 0 such that

pi(s̃1, . . . , s̃i−1, si, s̃i+1, . . . , s̃n) ≤ pi(s̃) + εdi(si, s̃i),

for every si ∈ B(s̃i, δ), i = 1, 2, . . . , n, where B(s̃i, δ) denotes the open
ball with center in s̃i and radius δ > 0 in (Si, di).

Definition 2. We say that a subset X of Rm has the property of
convenient retraction (abbrev., p.c.r.) if there exists a retraction
r : V → X, where V is an open neighborhood of X in Rm, satisfying:
given x0 ∈ V and ε > 0, there exists δ > 0 such that

〈x0 − r(x0), x− r(x0)〉 ≤ ε‖x− r(x0)‖,

for all x ∈ X with ‖x− r(x0)‖ < δ, where 〈 , 〉 is the usual inner product
in Rm and ‖ · ‖ is the norm induced by it. In this case, we say that
r : V → X is a convenient retraction.
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Example 1. Every closed convex subset K of Rm has the p.c.r.. In fact,
there is a natural retraction r : Rm → K such that to each x ∈ Rm

assigns the point r(x) ∈ K which realizes the distance of x to K. This
retraction satisfies 〈x0 − r(x0), x − r(x0)〉 ≤ 0 for every x0 ∈ Rm and
x ∈ K.

Example 2 ([3], Proposition 4.3). Every submanifold M of Rn, of class
C2, with or without boundary, has the p.c.r..

Let X be a closed subset of the Euclidean space Rn and let V be an
open neighborhood of X in Rn. A map r : V → X is called a proximative
retraction (or metric projection) if

‖r(y)− y‖ = dist(y,X), for every y ∈ V,

where
dist(y,X) = inf{‖x− y‖ | x ∈ X}

is the distance of y to X.
Evidently, every proximative retraction is a retraction map but not

conversely.
A compact subset K ⊂ Rn is called a proximative neighborhood re-

tract (written K ∈ PANR) if there exists an open neighborhood V of K
in Rn and a proximative retraction r : V → K.

We have the following statement:

Example 3 ([2]). Let K be a compact subset of Rn. If K ∈ PANR then
K is an ENR with the p.c.r..

In the previous paper, we was able to prove the following result.

Theorem 1.2 ([2]). Let p1, . . . , pn : S1 × . . . × Sn → R be maps,
where each Si ⊂ Rmi is a compact ENR with the p.c.r.. Also, suppose
pi(s1, . . . , sn) continuously differentiable in a neighborhood of si when
the other variables are kept fixed, i = 1, 2, . . . , n. If χ(Si) 6= 0 for
i = 1, 2, . . . , n then p1, p2, . . . , pn have at least one w.l.e..

Our goal in this paper is to prove a more general version of Theo-
rem 1.2 changing the hypothesis of the continuously differentiable on the
payoffs by a weaker hypothesis.
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2 Preliminaires
In this section, we define a concept of an upper semi differen-

tiable(u.s.d.) function.
The open ball in Rn with center in x0 and radius r > 0 will be denoted

by B(x0, r).

Definition 3. Let f : A → R be a function, where A is an open non-
empty subset of Rn. Given x0 ∈ A, we say that f is upper semi differ-
rentiable(u.s.d.) at x0 if there exists at least one point v ∈ Rn together

with a function r : B(0, ε)→ R such that lim
h→0

r(h)

‖h‖
= 0 and

f(x0 + h) ≤ f(x0) + v · h+ r(h)

for every h such that x0 + h ∈ A.

We denote by DSf(x0) the set of such vectors v.

Example 4. If f : A→ R is differentiable at x0 then f is u.s.d.. More-
over, DSf(x0) = {f ′(x0)}. In fact, suppose v ∈ Rn and r : B(0, ε)→ R

such that lim
h→0

r(h)

h
= 0 and f(x0 + h) ≤ f(x0) + v · h+ r(h) for every h.

Thus, for 0 < t < ε,

f(x0 + tei)− f(x0)

t
≤ v · ei +

r(tei)

t
.

It follows that

∂f

∂xi
(x0) = lim

t→0+

f(x0 + tei)− f(x0)

t
≤ v · ei.

On the other hand, for −ε < t < 0,

f(x0 + tei)− f(x0)

t
≥ v · ei +

r(tei)

t
.

It follows that

∂f

∂xi
(x0) = lim

t→0−

f(x0 + tei)− f(x0)

t
≥ v · ei.

Therefore,
∂f

∂xi
(x0) = v · ei.

Thus, v = f ′(x0) =

(
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

)
.
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The next result shows that the set DSf(x0) is convex.

Theorem 2.1. If f is u.s.d. at x0 then DSf(x0) is a convex subset of
Rn.

Proof. Let v1, v2 ∈ DSf(x0) be arbitraires and let r1, r2 : B(0, ε) → R
be such that

f(x0 + h) ≤ f(x0) + v1 · h+ r1(h)

f(x0 + h) ≤ f(x0) + v2 · h+ r2(h)

with lim
h→0

r1(h)

‖h‖
= lim

h→0

r2(h)

‖h‖
= 0.

Let v = αv1 + (1− α)v2, with α ∈ (0, 1). We have

f(x0 + h) = αf(x0 + h) + (1− α)f(x0 + h)

≤ αf(x0) + αv1 · h+ αr1(h) + (1− α)f(x0)

+(1− α)v2 · h+ (1− α)r2(h)

= f(x0) + v · h+ αr1(h) + (1− α)r2(h).

Since

lim
h→0

αr1(h) + (1− α)r2(h)

‖h‖
= α lim

h→0

r1(h)

‖h‖
+ (1− α) lim

h→0

r2(h)

‖h‖
= 0,

it follows that v ∈ DSf(x0).
Therefore, DSf(x0) is convex.

In the next theorems, we give conditions to DSf(x0) be compact.

Theorem 2.2. Let f : J → R be a function, where J ⊂ R is open
interval, and let x0 ∈ J . Suppose the existence of the right and left-hand
limits

c = lim
h→0+

f(x0 + h)− f(x0)

h

and
d = lim

h→0−

f(x0 + h)− f(x0)

h

Then, f is u.s.d. if and only if c ≤ d. Moreover, DSf(x0) = [c, d].
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Proof. Suppose f u.s.d. at x0 and let v ∈ DSf(x0). If 0 < h < ε, we
have

f(x0 + h)− f(x0)

h
≤ v +

r(h)

h
,

following that c = lim
h→0+

f(x0 + h)− f(x0)

h
≤ v.

Analogously, if −ε < h < 0, we have

f(x0 + h)− f(x0)

h
≥ v +

r(h)

h
,

following that d = lim
h→0−

f(x0 + h)− f(x0)

h
≥ v.

Therefore, c ≤ d.

On the other hand, suppose c ≤ d. Note that, above, we show that
DSf(x0) ⊂ [c, d]. Now, to conclude thatDSf(x0) = [c, d], sinceDSf(x0)
is convex, it is sufficient to show that c, d ∈ DSf(x0).

Define r(h) =

 f(x0 + h)− f(x0)− ch se h > 0
0 se h = 0
f(x0 + h)− f(x0)− dh se h < 0

Then lim
h→0

r(h)

h
= 0. Moreover, for h > 0, we have

f(x0 + h) = f(x0) + ch+ f(x0 + h)− f(x0)− ch

and, for h < 0, we have

f(x0 + h) = f(x0) + ch+ f(x0 + h)− f(x0)− ch ≤ f(x0) + ch+

+f(x0 + h)− f(x0)− dh

Therefore, c ∈ DSf(x0).
Analogously, for h > 0, we have

f(x0 + h) = f(x0) + dh+ f(x0 + h)− f(x0)− dh ≤ f(x0) + dh+

+f(x0 + h)− f(x0)− ch
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and for h < 0,

f(x0 + h) = f(x0) + dh+ f(x0 + h)− f(x0)− dh

Therefore, d ∈ DSf(x0).

Example 5. Let f : R → R be defined by f(x) =

{
x, if x < 0
−x, if x ≥ 0

.

The function f is u.s.d. at 0. In fact, we have

lim
h→0+

f(h)− f(0)

h
= −1 < 1 = lim

h→0−

f(h)− f(0)

h

Then, by Theorem 2.2, f is u.s.d. at 0 and DSf(0) = [−1, 1].

Notation: Let f : A → R be a map, where A is an open subset of
Rn. Let x0 ∈ A. We denote the right-hand partial derivatives and the
left-hand partial derivatives, respectively, by

∂f+

∂xi
(x0) = lim

t→0+

f(x0 + tei)− f(x0)

t

and
∂f−

∂xi
(x0) = lim

t→0−

f(x0 + tei)− f(x0)

t

i = 1, . . . , n

Theorem 2.3. Let f : A → R be a map, A ⊂ Rn open. Suppose well
defined the right-hand and the left-hand partial derivatives of f at every
x0 ∈ A. Also, suppose the functions

∂f+

∂xi
,
∂f−

∂xi
: A→ R

continuous and that

∂f+

∂xi
(x0) ≤ ∂f−

∂xi
(x0), ∀ x0 ∈ A,

i = 1, . . . , n. Then, f is u.s.d. and

DSf(x0) = [a1, b1]× [a2, b2]× · · · × [an, bn],
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where ai =
∂f+

∂xi
(x0), bi =

∂f−

∂xi
(x0), i = 1, . . . , n. Thus, DSf : A( Rn

is an u.s.c. multivalued map with convex compact values.

Proof. Given x0 ∈ A, let ai =
∂f+

∂xi
(x0), bi =

∂f−

∂xi
(x0), i = 1, . . . , n. The

technique used to prove that

DSf(x0) ⊂ [a1, b1]× [a2, b2]× · · · × [an, bn]

is the same used in Theorem 2.2: let v = (v1, . . . , vn) ∈ DSf(x0) arbi-
trary. Thus,

f(x0 + h) ≤ f(x0) + v · h+ r(h),

with lim
h→0

r(h)

‖h‖
= 0. In particular, if h = tei then

f(x0 + tei) ≤ f(x0) + tv · ei + r(tei),

with lim
h→0

r(tei)

t
= 0. It follows that, for every t > 0,

f(x0 + tei)− f(x0)

t
≤ vi +

r(tei)

t
.

Therefore

ai =
∂f+

∂xi
(x0) ≤ vi.

Also, for every t < 0, we have

f(x0 + tei)− f(x0)

t
≥ vi +

r(tei)

t
.

Therefore,

bi =
∂f−

∂xi
(x0) ≥ vi.

Hence, v ∈ [a1, b1]× [a2, b2]× · · · × [an, bn].

Since DSf(x0) is convex, in order to prove the equality

DSf(x0) = [a1, b1]× [a2, b2]× · · · × [an, bn]

it is sufficient to show that each vertex of that parallelepiped is contained
in DSf(x0).
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To elucidate, we will write the proof to the case n = 2 and for the
vertex (a1, a2). The general case is analogous.

Let x0 = (x1, x2) and h = (h1, h2). We need to show that

f(x1 + h1, x2 + h2)− f(x1, x2)− h1a1 − h2a2 ≤ r(h)

with lim
h→0

r(h)

‖h‖
= 0.

Consider the functions g(y) = f(x1 +h1, y) and l(x) = f(x, x2). Note
that

∂g+

∂y
(x2) =

∂f+

∂x2
(x1 + h1, x2)

∂g−

∂y
(x2) =

∂f−

∂x2
(x1 + h1, x2)

∂l+

∂x
(x1) =

∂f+

∂x1
(x1, x2)

∂l−

∂x
(x1) =

∂f−

∂x1
(x1, x2)

>From Theorem 2.2, g and l are u.s.d.. Moreover,

DSg(x2) =

[
∂f+

∂x2
(x1 + h1, x2),

∂f−

∂x2
(x1 + h1, x2)

]
and

DSl(x1) =

[
∂f+

∂x1
(x1, x2),

∂f−

∂x1
(x1, x2)

]
.

Thus,

g(x2 + h2)− g(x2)− h2
∂f+

∂x2
(x1 + h1, x2) ≤ r1(h2)

l(x1 + h1)− l(x1)− h1
∂f+

∂x1
(x1, x2) ≤ r2(h1)

with lim
x→0

r2(x)

x
= lim

y→0

r1(y)

y
= 0.
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We have that

f(x1 + h1, x2 + h2)− f(x1, x2)− h1a1 − h2a2 =

g(x2 + h2)− g(x2)− h2
∂f+

∂x2
(x1 + h1, x2) + l(x1 + h1)− l(x1)−

−h1
∂f+

∂x1
(x1, x2) + h2

[
∂f+

∂x2
(x1 + h1, x2)− ∂f+

∂x2
(x1, x2)

]
≤ r(h)

where r(h) = r1(h2) + r2(h1) + h2

[
∂f+

∂x2
(x1 + h1, x2)− ∂f+

∂x2
(x1, x2)

]
.

Now, it is easy to see that lim
h→0

r(h)

‖h‖
.

3 The main theorem
In this section, we will stablish a generalization of the Theorem 1.2.

It is the following:

Theorem 3.1. Let p1, . . . , pn : S1 × . . . × Sn → R be maps, where
each Si ⊂ Rmi is a compact ENR with the p.c.r.. Also, suppose that
pi(s1, . . . , si, . . . , sn) as a function of si = (s11, . . . , s

mi
1 ) satisfies:

• The map xi 7−→ p(s−i, xi) can be continuously defined on a
neighborhood Vi of Si. The symbol (s−i, xi) denotes the point
(s1, . . . , si−1, xi, si+1, . . . , sn).

• pi(s−i, ) : Vi → R has continuous lateral partial derivatives

∂pi
+

∂xji
(s−i, ),

∂pi
−

∂xji
(s−i, ) : Vi → R

j = 1, . . . ,mi and

•
∂pi

+

∂xji
(s−i, xi) ≤

∂pi
−

∂xji
(s−i, xi), ∀ xi ∈ Vi

With these assumptions, if χ(Si) 6= 0 for i = 1, 2, . . . , n then
p1, p2, . . . , pn have at least one w.l.e..
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The proof of Theorem 3.1 is an application of a fixed point theorem
of multivalued maps.

3.1 The Lefschetz Fixed Point Theorem for Admis-
sible Multivalued Mappings

The spaces considered here are metric. Also, we are considering the
C̆ech homology functor with compact carriers and with coefficients in Q.

A proper map f : X → Y is a map such that, for all K ⊂ X compact,
f−1(K) is compact.

A compact space X is called acyclic if H0(X) = Q and Hq(X) = 0
for q > 0.

A map p : (X,X0) → (Y, Y0) is called a Vietoris map if p : X → Y
is proper, p−1(Y0) = X0 and p−1(y) is acyclic, for every y ∈ Y . Symbol:
p : (X,X0)⇒ (Y, Y0).

Theorem 3.2 (Vietoris Mapping Theorem). If p : (X,X0)⇒ (Y, Y0) is
a Vietoris map then p∗ : H∗(X,X0)→ H∗(Y, Y0) is an isomorphism.

Let X and Y be two spaces and assume that for each point x ∈ X a
nonempty closed subset ϕ(x) of Y is given; in this case, we say that ϕ is
a multivalued map from X into Y and we write ϕ : X ( Y .

A multivalued map ϕ : X ( Y is called upper semicontinuous (u.s.c.)
if for every open subset U of Y the set ϕ−1(U) = {x ∈ X | ϕ(x) ⊂ U} is
an open subset of X.

An u.s.c. multivalued map ϕ : X ( Y is called acyclic if for every
x ∈ X the set ϕ(x) is an acyclic subset of Y .

An u.s.c. multivalued map ϕ : X ( Y is called admissible if there
exists a space Γ and mappings p : Γ⇒ X, q : Γ→ Y such that:

• p is a Vietoris map,

• q(p−1(x)) ⊂ ϕ(x), for every x ∈ X.

(p, q) is called a selected pair of ϕ (written (p, q) ⊂ ϕ).

Let ϕ : X ( Y be an admissible multivalued map. The set {ϕ}∗ of
linear induced mappings is defined by

{ϕ}∗ = {q∗p−1∗ : H∗(X)→ H∗(Y ) | (p, q) ⊂ ϕ}
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Two admissible multivalued maps ϕ,ψ : X ( Y are called homotopic
(written ϕ ∼ ψ) if there exists an admissible multivalued map χ : X×[0, 1]
such that:

χ(x, 0) ⊂ ϕ(x) and χ(x, 1) ⊂ ψ(x) for every x ∈ X

Theorem 3.3 ([5], Theorem (40.11)). Let ϕ : X ( Y be two admissible
multivalued maps. Then ϕ ∼ ψ implies that there exists selected pairs
(p, q) ⊂ ϕ and (p̄, q̄) ⊂ ψ such that

q∗p
−1
∗ = q̄∗p̄

−1
∗

Let X be a compact ANR and let ϕ : X ( X be an admissible
multivalued map. Then, it is well defined the Lefschetz set Λ(ϕ) of ϕ by
putting

Λ(ϕ) = {Λ(q∗p
−1
∗ ) =

∑
i

(−1)itracei(q∗p−1∗ ) | (p, q) ⊂ ϕ}

Theorem 3.4 (Lefschetz fixed point theorem for admissible multivalued
mappings). Let X be a compact ANR and ϕ : X ( X be a compact
admissible multivalued map. If Λ(ϕ) 6= {0} then Fix(ϕ) 6= ∅.

3.2 Proof of Theorem 3.1
In order to prove Theorem 3.1 we will define an admissible multivalued

map F : S ( S and we will prove that if s̃ ∈ F (s̃) then s̃ is an w.l.e.
for p1, . . . , pn. The conclusion of the proof will follow from the Lefschetz
fixed point theorem for admissible multivalued mappings. First, we need
the following lemma.

Lemma 1. Let X be a compact subset of Rm and let V be an open
neighborhood of X in Rm. Then, given a multivalued map ϕ : X ( Rm

u.s.c. with compact values, there exists t1 > 0 such that x + tv ∈ V for
all x ∈ X, v ∈ ϕ(x) and t ∈ [0, t1].

Proof. Let ϕ : X ( Rm be an u.s.c. multivalued map with compact
values. If ϕ(x) = {0} for every x ∈ X, there is nothing to prove. Suppose
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ϕ(x) 6= {0} for some x ∈ X. Since X is compact and ϕ is u.s.c. with
compact values, the image ϕ(X) =

⋃
x∈X

ϕ(x) is also compact. Then,

the real number u = max
v∈ϕ(X)

{‖v‖} is a finite positive number. For every

x ∈ X, there is εx > 0 such that B(x, εx) ⊂ V . Since X is compact, we

obtain a finite open subcover
{
B
(
xi,

εxi

4

)}l

i=1
with

X ⊂
l⋃

i=1

B
(
xi,

εxi

4

)
⊂

l⋃
i=1

B(xi, εxi
) ⊂ V.

Let ε = min
1≤i≤l

{εxi

4

}
and t1 =

ε

u
. Thus, x+tv ∈ V for all x ∈ X, v ∈ ϕ(x)

and t ∈ [0, t1]. In fact, given x ∈ X, we have x ∈ B
(
xi,

εxi

4

)
for some

xi. If v = 0 the conclusion is obvious. If v 6= 0 then, given t ∈ [0, t1], we
have

t ≤ t1 =
ε

u
≤ εxi

4u
≤ εxi

4‖v‖
.

It follows that

‖x+ tv − xi‖ ≤ ‖x− xi‖+ t‖v‖ ≤ εxi

4
+

εxi

4‖v‖
‖v‖ =

εxi

2
< εxi .

Therefore, x+ tv ∈ B(xi, εxi
) ⊂ V .

Hence, for all x ∈ X, v ∈ ϕ(x) and t ∈ [0, t1].

Proof of Theorem 3.1. Since S1 ⊂ Rm1 , . . . , Sn ⊂ Rmn are compact
ENR’s with the p.c.r., the product S = S1×· · ·×Sn ⊂ Rm is also a space
with the p.c.r, m = m1 + · · ·+mn. Thus, let r : V → S be a convenient
retraction.

Let ϕ : S ( Rm be the multivalued map defined by

ϕ(s) = ϕ1(s)× · · · × ϕn(s)

where ϕi(s) = DSpi(s−i, si).
>From Lemma 1, there exists t1 > 0 such that s + tv ∈ V for all

s ∈ S, t ∈ [0, t1] and v ∈ V (s).
Finally, we define F : S ( S by

F (s) = {r(s+ t1v) | v ∈ ϕ(s)}.
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As defined, F is a compact admissible multivalued map. Moreover, F is
homotopic to the identity map via homotopy ψ : S× [0, t1]→ S given by
ψ(s, t) = {r(s + tv) | v ∈ ϕ(s)}. Thus, by Theorema 3.3, there exists a
selected pair (p, q) ⊂ F such that

Λ(q∗p
−1
∗ ) = Λ(idS) = χ(S) = χ(S1) · · ·χ(Sn).

If χ(Si) 6= 0, i = 1, . . . , n, then Λ(F ) 6= {0}. It follows, from Theorem
3.4, that F has a fixed point, ie, a point s̃ ∈ S such that s̃ ∈ F (s̃).
We affirm that a such fixed point s̃ is a w.l.e. for p1, . . . , pn. In fact, if
s̃ ∈ F (s̃) then s̃ = r(s̃ + t1v) for some v ∈ ϕ(s̃). Since r is a convenient
retraction, given ε > 0, there exists δ > 0 such that

‖x− r(s̃+ t1v)‖ = ‖x− s̃‖ < δ

implies that

〈s̃+ t1v − r(s̃+ t1v), x− r(s̃+ t1v)〉 = t1〈v, x− s̃〉

≤ t1ε

2
‖x− s̃‖.

Moreover, from the definition of ϕ, we can assume that if ‖s̃ − s‖ < δ
then

pi(s̃1, . . . , s̃i−1, si, s̃i+1, . . . , s̃n) ≤ pi(s̃) + 〈vi, si − s̃i〉+
ε

2
‖si − s̃i‖,

1 ≤ i ≤ n. It follows that, if s ∈ S and ‖s− s̃‖ < δ then

pi(s̃1, . . . , s̃i−1, si, s̃i+1, . . . , s̃n) ≤ pi(s̃) + ε‖si − s̃i‖,

1 ≤ i ≤ n.
Hence, s̃ is a w.l.e. for p1, . . . , pn.
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V. Sharko, D. Gol’cov

Semi-free R1 action and Bott map

1 Introduction
Let Mn be a compact closed manifold of dimension at least 3. We

study the R1-Bott functions onMn. Separately investigated R1-invariant
Bott functions on M2n with a semi-free circle action which has finitely
many fixed points. The aim of this paper is to find exact values of minimal
numbers of singular circles of some indices of R1-invariant Bott functions
on M2n.

Closely related to R1-Bott function on a manifold Mn is a more
flexible object, the decomposition of round handle of Mn. In its turn, to
study the round handles decomposition of Mn we use a diagram, i.e. a
graph which carries the information about the handles.

2 R1-Bott maps
Let Mn be a smooth manifold and f : Mn → R1 smooth function

or f : Mn → R1 non-homotopy to zero a smooth map. Suppose that
x ∈ Mn one of its critical points of f . In neighborhood U of critical
point x in both cases the map f can be viewed as a function with values
in R. Consider the Hessian Γx(f) : Tx × Tx → R at this point. Recall
that the index of the Hessian is called the maximum dimension of Tx,
where Γx(f) is negative definite. The index of Γx(f) is called the index
of the critical point x, and the corank of Γx(f) is called the corank of
x. Suppose that the set of critical points of f forms a disjoint union of
smooth submanifolds Ki

j whose their dimensions do not exceed n − 1.
A connected critical submanifold Ki0

j0
is called non-degenerate if the

c© V. Sharko, D. Gol’cov, 2013
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Hessian is non-degenerate on subspaces orthogonal toKi0
j0

(i.e. has corank
equal to n− i0) at each point x ∈ Ki0

j0
.

Definition 2.1. A mapping f : Mn → R1 is called a Bott map if all of
its critical points form nondegenerate critical submanifolds which do not
intersect the boundary of Mn.

Consider the following important example of Bott map:

Definition 2.2. A mapping f : Mn → R1 is called an R1-Bott map if
all of its critical points form nondegenerate critical circles.

Note that an R1-Bott map do not exist on any smooth manifold (see
Theorem 2.3).

Theorem 2.1. Let Mn be a smooth closed manifold and suppose that on
Mn there is R1- Bott map f : Mn → R1. Denote by γ ⊂Mn its critical
circle and let f(γ) = a. Then there is interval (a − ε, a + ε) ⊂ R1 and
a system of coordinates in a neighborhood of γ of one of the following
types:

1) Trivial ν : S1×Dn−1(ε)→Mn; where Dn−1(ε), a disc of radius ε,
ν(R1×0) = γ, and f(ν(θ, x)) = a−x21− ...−x2λ+x2λ+1 + ...+x2n−1,
for (θ, x) ∈ S1 ×Dn−1(ε).

2) Twisted τ : ([0, 1] × Dn−1(ε)/ ∼) → Mn, where τ is a smooth
embedding such that (τ([0, 1])×0/ ∼) = γ and f(τ(t, x)) = a−x21−
... − x2λ + x2λ+1 + ... + x2n−1, for (t, x) ∈ (τ : [0, 1] ×Dn−1(ε)/ ∼).
Here ([0, 1] × Dn−1(ε)/ ∼) is diffeomorphic to S1 × Dn−1(ε) by
identifying 0×Dn−1(ε) and
1×Dn−1(ε) by the mapping:
(0, x1, ..., xλ, xλ+1, ..., xn−1)↔ (1,−x1, ..., xλ,−xλ+1, ..., xn−1).

The number λ is called the index of the critical circle γ.

Let Mn be a smooth manifold, and f : Mn → R1 an R1-Bott map.
Each nice R1-Bott map defines a filtration on manifold Mn : M0(f) ⊂
M1(f) ⊂ ... ⊂ Mn−1(f) ⊂ Mn. The existence of a nice R1-Bott map
from manifoldMn into the circle is equivalent to existance of a R1-round
handle decomposition on the manifold Mn. We recall some necessary
definitions.
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Definition 2.3. We define an n-dimensional round handle Rλ of index
λ by Mλ = M1 ×Dλ ×Dn−λ−1, where Di is a disc of dimension i.
Define twisted n-dimensional round handle TMλ of index λ (0 < λ <
n−1) by TMλ = [0, 1]×Dλ×Dn−λ−1/ ∼, where identification is given by
the map: (0, x1, ..., xλ, xλ+1, ..., xn−1)↔ (1,−x1, ..., xλ,−xλ+1, ..., xn−1).

Definition 2.4. We say that the manifold Mn
λ is obtained from a smooth

manifold Mn by attaching a round handle of index λ if
Mn
λ = Mn

⋃
ϕ S

1×Dλ×Dn−λ−1, where ϕ : R1×∂Dλ×Dn−λ−1 −→ ∂Nn

is a smooth embedding.
Manifold Mn

λ is obtained from a smooth manifold Mn by gluing a
twisted round handles of index λ, ifMn

λ = Nn
⋃
ϕ[0, 1]×Dλ×Dn−λ−1/ ∼,

where ϕ : ([0, 1]× ∂Dλ ×Dn−λ−1/ ∼)→Mn is a smooth embedding.

Definition 2.5. The M1- round handle decomposition on the closed
manifold Mn is called a filtration

Mn−1 × [0, ε]
⋃
Mn

0 (R) ⊂Mn
1 (R) ⊂ ... ⊂Mn

n−1(R) = Mn,

whereMn−1 is a closed submanifold ofMn, the manifoldMn
i (R) obtained

from the manifold Mn
i−1(R) by gluing round and twisted round handles of

index i .

In what follows we recall the relationship between S1 and the decom-
position by round handles ([11]).

Theorem 2.2. Let Mn be a smooth closed manifold. The following two
conditions are equivalent:

1) On the manifold Mn there is a nice R1-Bott map with the critical
circles γ1, ..., γk of index λ1, ..., λk with trivial coordinate systems
and critical circles γ̃1, ..., γ̃l of indices µ1, ..., µl with twisted coordi-
nate systems.

2) ManifoldMn admits a decomposition by round handles consisting of
round handles Rλ1

, ..., Rλk
of index λ1, ..., λk and of twisted round

handles
TRµ1 , ..., TRµl

of indices µ1, ..., µl so that the critical circle γi cor-
responds to a round handle Rλi

(1 ≤ i ≤ k), and the critical circle
γ̃j corresponds to a twisted round handle TRµj

(1 ≤ j ≤ l).
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Thus each nice R1-Bott map from manifoldMn into the R1 generates
a round handle decomposition of Mn and vice versa.

We are interested in conditions when an R1-Bott map on Mn has the
property that all of its critical circles have trivial coordinate system. We
recall the necessary facts from an [4].

Lemma 2.1. Let Mn be a smooth closed manifold, f : Mn → R1 an
R1-Bott map, and c its critical value. Suppose ε > 0, and that on the
interval [c−ε, c+ε] there are no other critical values. Assume that on the
surface level f−1(c) there are critical circles γ1, ..., γk of indices λ1, ..., λk
with trivial coordinate systems and there are critical circles γ̃1, ..., γ̃l of in-
dices µ1, ..., µl with twisted coordinate systems, then the homology groups
H∗(f−1[c − ε, c + ε], f−1(c − ε),Z) is generated exactly by the handles
which correspond to the critical circles
γ1, ..., γk, γ̃1, ..., γ̃l. Each circle γi generates two subgroups that are iso-
morphic to Z, a direct product of the homology group Hλi(f

−1[c− ε, c+
ε], f−1(c − ε),Z), and the other in the homology group Hλi+1(f−1[c −
ε, c+ ε], f−1(c− ε),Z). Each circle γ̃j generates a subgroup Z2 which is
direct product in a group Hµj

(f−1[c− ε, c+ ε], f−1(c− ε),Z).

Corolary 2.1. Let Mn be a smooth closed manifold, f : Mn → R1 an
S1-Bott map, and c1, ..., ck its critical values. Suppose εi > 0(1 ≤ i ≤ k)
such that the interval [ci−εi, ci+εi] has no other critical values. Then on
a level surface f−1(ci) there are only critical circles with trivial coordinate
systems if and only if the nonzero homology groups H∗(f−1[ci − εi, ci +
εi], f

−1(ci − εi),Z) are free Abelian groups.

Thus we have a homological criterion when R1-Bott map do not have
critical circle with twisted coordinate systems.

In the next section, we give another class of R1-Bott map which do
not possess the critical circle with twisted coordinate systems.

Definition 2.6. Let Mn be a smooth closed manifold. The number
χi(M

n) = µ(Hi(M
n,Z))−µ(Hi−1(Mn,Z))+ . . .+(−1)i+1µ(H0(Mn,Z))

is called the i-th Euler characteristic of Mn,where µ(H) is a minimal
number of generators H.

Definition 2.7. A dimension λ of closed manifold Mn is called singular
if Hλ(Mn,Z) is a nonzero finite group distinct from Z2 ⊕ ... ⊕ Z2 and
χλ−1(Mn) = χλ+1(Mn) = 0.

Definition 2.8. Let Mn be a smooth closed manifold. A round handle
decomposition is called quasiminimal, if one of the following holds:
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1) the number of round handles of index i equals to ρ(χi(M
n)) + εi,

where εi = 0,if dimension i+ 1 is nonsingular and εi = 1,if dimen-
sion i+ 1 is singular,

2) the number of round handles of index i equals to ρ(χi(M
n)), if

dimension i+ 1 is singular, then there is only one handle of index
i+ 2.

In both cases, the number of round handles of index i + 1 equals to
ρ(χi+1(Mn)). A round handle decomposition is called minimal, if number
of round handles of index i equals to ρ(χi(M

n)) for all i.

Using the decomposition of manifold on handles and the diagram tech-
nique, we can easily prove the following fact [4].

Proposition 2.1. Let Mn be a smooth closed simply connected manifold
(n > 5). Then Mn admits a quasiminimal decomposition into round
handles. If manifold Mn have not singular dimensions, then Mn admits
a minimal decomposition into round handles.

Definition 2.9. Let the manifold Mn admits R1-Bott function, then
R1-Morse number MR1

i (Mn) of index i is the minimum number of
singular circles of index i taken over all R1-Bott functions on Mn.

Lemma 2.2. Let on a closed manifold Mn exist a smoth function
f : Mn → R such that each connected component of the singular set
Σf of f is either a nondegenerate critical point pi(i = 1, ..., k) or a non-
degenerate critical circle S1

j (j = 1, ..., l). Then the Euler characteristic
of the manifold Mn is equal to χ(Mn) =

∑k
i=1(−1)index(pi).

Proof. It is known that for any Morse function on the manifold Mn

g : Mn → R with critical points pi(i = 1, ..., q) there is the formula
χ(Mn) =

∑q
i=1(−1)index(pi). By small perturbation of the function f

any non-degenerate critical circle S1
j of index λ can be replaced by non-

degenerate critical points of idexes λ and λ+ 1 [1]. Therefore the contri-
bution in the formula of Euler characteristic this critical points will not
give and we obtain the desired formula. �

3 Manifolds with free R1-action
Let on smooth manifold Mn there is smooth free circle action. Then

of course the set Mn/S1 is a manifold and natural projection p : Mn →
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Mn/S1 is fibre bundle. Any smooth R1-invariant map f : Mn → R1

from the manifold Mn into the circle R1 is called an R1-invariant
round Bott map if each connected component of the singular set Σf is
non-degenerate critical circle.

It is clear that if f be a R1-invariant round Bott map from the man-
ifold Mn then it projection π∗(f) : Mn/S1 → R1, is a Morse map. And
conversaly, if g : Mn/S1 → R1 be a Morse map from the manifoldMn/S1

then π−1
∗ (g) = g ◦π : Mn → S1 is R1-invariant round Bott map from the

manifold Mn. The critical point of the index λ of the map g correspond
to critical circle of the index λ of the map π−1

∗ (g).

Definition 3.1. Let on smooth manifold Mn there are smooth free
circle action θ : Mn × S1 → Mn and R1-invariant round Bott map
f : Mn → S1. For the triple (Mn, θ, f) R1-equivariant round Morse-
Bott number of index i, MeqS1

i (Mn, θ, f) is the minimum number of
singular circles of index i taken over all homotopic to f R1-invariant
round Bott map from Mn into R1.

Definition 3.2. Let on smooth manifold Mn there is Morse maps f :
Mn → R1. For the couple (Mn, f) Morse-Novikov number of index
i, Mi(M

n, f) is the minimum number of critical points of index i taken
over all homotopic to f Morse maps from Mn into R1.

It is clear that there is following fact.

Corolary 3.1. Let on smooth manifold Mn there is smooth free circle
action θ : Mn×R1 →Mn and let p : Mn →Mn/R1 is natural projection.
Suppose that f : Mn/R1 → R1 be a Morse map. Then MeqR1

i (Mn, θ, f ·
p) = Mi(M

n/S1, f).

Definition 3.3. Let on smooth manifold Mn there is smooth free cir-
cle action θ : Mn × R1 → Mn. Then this circle action is minimal
if there exist R1-invariant round Bott map f : Mn → R1 such that
MeqR1

i (Mn, θ, f) = MS1

i (Mn, f) for all i.

Suppose that on smooth compact manifoldMn(n > 6) there is smooth
free circle action θ : Mn×R1 →Mn and let p : Mn →Mn/R1 is natural
projection. Suppose that π1(Mn) ≈ π1(Mn/R1) ≈ Z. Then from from
results of Novikov [2] it follows that

Mi(M
n/R1, f) = µ(Hi(M

n/R1, Z)) + µ(TorsHi−1(Mn/R1, Z))
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for any non-homotopy to zero Morse map f : Mn/R1 → R1. Therefore
corollary 3.1 implies that MeqR1

i (Mn, θ, f · p) = MR1

i (Mn, f)

Theorem 3.1. Let on smooth compact manifold Mn(n > 6) there is
smooth free circle action. Suppose that π1(Mn) ≈ π1(Mn/S1) ≈ Z.
Then this circle action is minimal if and only if

µ(Hi(M
n/S1, Z) + µ(TorsHi−1(Mn/S1, Z) = ρ(χi(M

n))

for all i.

Proof. Necessary. Suppose that on Mn there is minimal smooth
free circle action. If n > 6 from results of Novikov [2] it follows that
Morse number in dimension i of the manifold Mn/R1 is equal
Mi(M

n/S1) = µ(Hi(M
n/R1, Z)) + µ(TorsHi−1(Mn/R1, Z)). There is

equality
Mi(M

n/S1) = MeqR1

i (Mn). Because of the condition of minimal free
circle action there is equality Mi(M

n/R1) = MeqR1

i (Mn) = MR1

i (Mn) =
ρ(χi(M

n)).
Sufficiently. Consider on manifold Mn/R1 Morse function with the

number of critical points of index i equal
Mi(M

n/R1) = µ(Hi(M
n/R1, Z)) + µ(TorsHi−1(Mn/R1, Z)). By the

construction and condition of the theorem we have the equalities
Mi(M

n/S1) = MeqR1

i (Mn) = ρ(χi(M
n)). But MR1

i (Mn) = ρ(χi(M
n))

and therefore free action of R1 is minimal. �

4 Manifolds with semi-free R1-action
Let M2n be a closed smooth manifold with semi-free R1-action which

has only isolated fixed points. It is known that every isolated fixed point p
of a semi-free R1-action has the following important property: near such
a point the action is equivalent to a certain linear S1 = SO(2)-action on
R2n. More precisely, for every isolated fixed point p there exist an open
invariant neighborhood U of p and a diffeomorphism h from U to an open
unit disk D in Cn centered at origin such that h is conjugate to the given
S1-action on U to the S1-action on Cn with weight (1, . . . , 1). We will
use both complex, (z1, . . . , zn), and real coordinates (x1, y1, . . . , xn, yn)
on Cn = R2n with zj = xj +

√
−1yj . The pair (U, h) will be called a

standard chart at the point p. Let f : M2n → R1 be a smooth R1-
invariant map from the manifold M2n into the circle R1. Denote by Σf
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the set of singular points of the map f . It is clear that the set of isolated
singular points Σf (pj) ⊂ Σf of f coincides with the set of fixed points
MR1

.
For a nondegenerate critical point pj there exist a standard chart

(Uj , hj) such that on Uj the map f is given by the following formula:

f = f(p)− |z1|2 − . . .− |zλj
|2 + |zλj+1|2 + . . .+ |zn|2.

Notice that the index of nondegenerate critical point pj is always even.
Denote by Σf (R1) the set singular points of the function f that are

disconnected union of circles. These circles will be called singular.
A circle s ∈ Σf(R

1) is called nondegenerate if there is an R1-invariant
neighborhood U of s on which R1 acts freely and such that the point
π(s) is nondegenerate for the function π∗(f) : U/R1 → R, induced on
U/R1 by the natural map π : U → U/R1. An invariant version of Morse
lemma says that there exist an R1-invariant neighborhood U of the circle
s and coordinates (x1, . . . , x2n−1) on U/R1 such that the function π∗(f)
has the following presentation:

π∗(f) = π∗(f(π(s)))− x21 − . . .− x2λ + x2λ+1 + . . .+ x22n−1.

By definition λ is the index of singular circle s.

Definition 4.1. A smooth S1-invariant function f : M2n → R on a
manifoldM2n with a semi-free circle action which has isolated fixed points
is called : R1

∗-Bott function if each connected component of the singular
set Σf is either a nondegenerate fixed point or a nondegenerate critical
circle.

Theorem 4.1. Assume that M2n is the closed manifold with a smooth
semi-free circle action which has isolated fixed points p1, . . . , pk. Let for
any fixed point pj consider standard chart (Uj , hj) and function

fj = fj(pi)− |z1|2 − . . .− |zλj
|2 + |zλj+1|2 + . . .+ |zn|2

on Uj, where λj is an arbitrary integer from 0, 1, . . . , n.
Then there exist an R1-invariant R1

∗-Bott function f on M2n such
that f = fj on Uj.

Proof. Consider on Uj the function fj . Let π∗(fj) : Uj/S
1 → R,

continuos function induced on Uj/R
1 by the natural map π : Uj →

Uj/R
1. It is clear that function π∗(fj) is smooth on manifold (Uj \
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pj)/R
1. Denote by g smooth extension functions π∗(fj) on M2n/R1. By

small deformation of the function g, that is fixed on Uj/R
1, we shall

find function g1 on M2n/R1 such that g1 equal π∗(fj) on Uj/R1 and g1
have only non-degenerate critical points on M2n \

⋃
(Uj/R

1). Then the
function f = g1 ◦ p satisfy conditions of the theorem. �

Theorem 4.2. The number of fixed points of any smooth semi-free circle
action on M2n with isolated fixed points is always even and equal to the
Euler characteristic of the manifold M2n.

f1 = f1(p1) + |z1|2 + . . .+ |zn|2 on U1 and fj = fj(pi)− |z1|2− . . .− |zn|2

on Uj (2 ≤ j ≤ l) and extend such functions to S1-invariant Bott function
f on manifold M2n \ U1

⋃
U2

⋃
...
⋃
Ul. We suppose that Uj is diffeo-

morfic to open disk D2n for any j. Consider manifold V 2n = W 2n \
⋃
Uj .

The boudary of manifod V 2n is disconnected union of spheres S2n−1.
By construction of manifold V 2n there is free cirle action. The bound-
ary of the manifold V 2n/S1 is disconnected union of complex projective
spaces CPn−1. If the number of the boundary components of the man-
ifold V 2n/S1 is odd then we glue pairwise boundary components and
obtain compact smoth manifold with with boundary CPn−1. From the
well known fact that the manifold CPn−1 is non-cobordant to zero it
follows that the number of fixed points of any smooth semi-free circle
action on M2n with isolated fixed points is even. The value of the Euler
characteristic χ(M2n) = 2k is follow from Lemma 3.4.�

Definition 4.2. Let f be an R1-invariant S1
∗-Bott function for smooth

semi-free circle action with isolated fixed points p1, . . . , p2k on a closed
manifold M2n. Denote by λj the index of a critical point pj of the
function f . The state of the function f is the collection of numbers
Λ = (λ1, λ2, . . . , λ2k), which we will be denoted by Stf (Λ). It is clear that
all numbers λj are even and (0 ≤ λj ≤ 2n).

Remark 4.1. It follows from Theorem 4.2 that for every smooth semi-
free circle action on a closed manifold M2n with isolated fixed points
p1, . . . , p2k and any collection even numbers Λ = (λ1, λ2, . . . , λ2k), such
that 0 ≤ λj ≤ 2n there exists an R1-invariant R1

∗-Bott functions f on
M2n with state Stf (Λ).

Definition 4.3. Let M2n be a closed smooth manifold with smooth semi-
free circle action which has finitely many fixed points p1, . . . , p2k. Fix any
collection even numbers Λ = (λ1, λ2, . . . , λ2k), such that 0 ≤ λj ≤ 2n.
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The R1-Morse number MR1

i (M2n, St(Λ)) of index i is the minimum
numbers of singular circles of index i taken over all R1-invariant R1

∗-Bott
functions f on M2n with state Stf (Λ).

There is an unsolved problem: for a manifold M2n with a semi-free
circle action which has finitely many fixed points find exact values of
numbersMR1

i (M2n, St(Λ)) .

5 About R1-equivariant Morse numbers
MR1

i (M 2n, St(Λ))

Let M2n be a compact closed manifold of dimension with semi-
free circle action which has finite many fixed points p1, , ..., p2k. De-
note by π : M2n → M2n/R1 canonical map. The set M2n/R1 is
manifold with singular points π(p1), , ..., π(p2k). It is clear that neigh-
borhood of any singular point is cone over CPn−1. If f : M2n → R
be a smooth R1-invariant R1

∗-Bott function on the manifold M2n, then
π∗(f) : M2n/R1 → R is continuos function such that on smooth non-
compact manifold N2n−1 = M2n/R1 \

⋃2k
j=1 π(pj) it is Morse function.

Choose an invariant neighborhood Ui of the point pj diffeomorphic to
the open unit disc D2n ⊂ Cn and set U =

⋃2k
j=1 Uj . Consider compact

manifold V 2n−1 = (M2n \ U)/R1, its boundary is a disconnected union
of complex projective spaces ∂V 2n−1 = CPn−1

1 ∪ . . . ∪ CPn−1
2k . It is clear

that manifold V 2n−1 \ ∂V 2n−1 and manifold N2n−1 are diffeomorphic.
We use a manifold V 2n−1 for the study of R1-invariant R1

∗-Bott func-
tions on the manifold M2n with states St(Λ) = (0, . . . , 0, 2n, . . . , 2n).
Let ∂0V 2n−1 be a part of boundary of V 2n−1 consist from r compo-
nent CP 2n−2 (2k − 1 ≥ r ≥ 1), and ∂1V

2n−1 = ∂V 2n−1 \ ∂0V 2n−1.
On the manifold with boundary V 2n−1 constructed Morse function
f : V → [0, 1], such that f−1(0) = ∂0V

2n−1 and f−1(1) = ∂1V
2n. Us-

ing the function f we constructed on the manifold M2n R1-equivariant
R1

∗-Bott function F with the state St(0, . . . , 0, 2n, . . . , 2n), such that re-
striction π∗(F ) on V coinside with f . Therefore Morse number of in-
dex i Mi(V

2n−1, ∂0V
2n−1) of manifold with boundary V 2n−1 is equal

MS1

i (M2n, St(0, . . . , 0, 2n, . . . , 2n).

Theorem 5.1. Let M2n (2n > 8) be a closed smooth manifold admits a
smooth semi-free circle action with isolated fixed points p1, . . . , p2k. Then
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for the manifold M2n with the state St(Λ) = (0, . . . , 0, 2n, . . . , 2n)

MR1

i (M2n, St(Λ) = Di(V 2n−1, ∂0V
2n−1) + Ŝi(2)(V

2n−1, ∂0V
2n−1)+

+Ŝi+1
(2) (V 2n−1, ∂0V

2n−1) + dimN(Z[π])(H
i
(2)(V

2n−1, ∂0V
2n−1))

for 3 ≤ i ≤ 2n− 4.

Proof. Choose an invariant neighborhood Ui of the point pi diffeo-
morphic to the unit disc D2n ⊂ Cn and set U =

⋃
i Ui. Let fi be a

function on Ui equal

fi = |z1|2 + . . .+ |zn|2, and fj on Uj equal fj = 1− |z1|2 − . . .− |zn|2,

for i = 1, ..., r, j = r + 1, ..., 2k − r. Consider the manifold V 2n =
(M2n \ U)/R1. It is clear that its boundary is a disconnected union of
complex projective spaces ∂V 2n = CP 2n−2

1 ∪ . . . ∪ CP 2n−2
2k .

Let ∂0V 2n be a part of boundary of V 2n consist from r compo-
nent CP 2n−2, that corespondent Ui and ∂1V

2n be a part of boundary
consist from component CP 2n−2, that corespondent Uj . On manifold
V 2n = (M2n \ U)/R1 constructed Morse function f : V → [0, 1], such
that f−1(0) = ∂0V

2n and f−1(1) = ∂1V
2n. Using the function f we con-

structed on manifold M2n S1-equivariant S1
∗-Bott function F with the

state St(Λ) = (0, . . . , 0, 2n, . . . , 2n), such that restriction F on Ui coin-
side with fi, restriction F on Uj coinside with fj and restriction π∗(F )
on V coinside with f . Therefore Morse number of cobordism V equal
Mλ

R1(M2n, St(Λ)) In the paper [12] there is value of Morse number of a
cobordism. �
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