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Introduction

The development of topology in the 20th century resulted in the
growth of interest to applications of topological methods in dif-
ferent areas of mathematics. It turned out that many objects in
complex analysis can have a topological origin and can be investi-
gated without invocation of analytical methods.

First steps of topological methods in complex analysis were
made by Stoilow (see [39]). He gave the notion of interior map and
proved that for every interior mapping F from 2-manifold M? to
the complex plane C there exist a complex structure on M? and a
homeomorphism ¥ : M? — M? such that the mapping FoV is con-
formal. Recall that an interior mapping is an open mapping such
that a full preimage of any point does not contain a nondegenerate
continuum (i. e. a closed connected set).

The theory of conformal mappings naturally leads to harmonic
functions. In the same way, the investigation of interior mappings
brings to pseudoharmonic functions, introduced by Morse (see [22,
23]).

A smooth function f(z,y) is said to be harmonic at a point
(x0,yo) if it complies with Laplace equation

2 2
i;lf};(xoa Yo) + gy‘z(wmyo) =0.

Every function that is harmonic at a point can be presented as a
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real part of a conformal mapping in a small neighbourhood of this
point.

Let write D? = {2z € C||z| < 1}. Let Int D? be an interior of
D? and let M? be a topological 2-manifold.

Definition 0.1.1. A function f(z) is pseudoharmonic at a point
p € M? if there exist a neighborhood U(p) and a homeomorphism ¢
of U(p) onto Int D? such that o(p) = 0 and fop~1(2) is harmonic
and s not constant.

It is easy to verify [23] that the homeomorphism ¢ from Defi-
nition 0.1.1 can be chosen such that fop~1(z) = Rez" + f(p) for
some n € N.

A function f is called pseudoharmonic in a domain if it is
pseudoharmonic at all its points.

The property of a continuous function to be pseudoharmonic
is local. But global properties of pseudoharmonic and harmonic
functions are tightly connected.

Definition 0.1.2 (see [40]). A continuous function g is called a
conjugate pseudo-harmonic function of f at a point p € M? if
there exist a neighbourhood V of p on M? and a homeomorphism,
¥V — Int D? such that ¥(p) = 0 and

u=foyp t:IntD>* - C and v=goyp !:IntD*— C
are conjugate harmonic functions.

By [23] we can choose V and v in Definition 0.1.2 such that

u(z) =U oy (2) = Re 2" + f(p),
v(z) =Voyy Hz) =Imz" 4+ g(p), z==x+iycIntD?,

for a certain n = n(p) € N.
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A function ¢ is called a conjugate pseudo-harmonic function
of f on M? if it is a conjugate pseudo-harmonic function of f at
every p € M?.

It is straightforward to prove that if there exists a conjugate
function g for a pseudo-harmonic function f : M? — R, then g is
pseudo-harmonic on M? and the mapping F = f +ig : M? — C is
interior. Then by Stoilow’s theorem there exist a complex structure
on M? and a homeomorphism W : M? — M? such that map FoW
is conformal, hence f o ¥ and g o ¥ are harmonic functions.

On the other hand it is obvious that for every conformal func-
tion I : M? — C its real and imaginary parts are conjugate
pseudo-harmonic functions.

Boothby (see [5]) and subsequently Jenkins and Morse [11,25],
studied the problem of existing of a conjugate to a given pseudo-
harmonic function that is defined on the complex plane or on a
Jordan domain of the complex plane.

In [5,25] the existence of a congugate pseudo-harmonic function
is proved if the initial function is pseudo-harmonic on C.

In [11] the existence of a congugate pseudo-harmonic function
is proved if the initial function satisfies the following conditions: it
is continuous on a closed Jordan domain D, it has a finite number
of extrema, and it is a pseudo-harmonic in Int D.

Let us consider the case when D is a closed Jordan domain.
Without loss of generality, we suppose that a continuous function
f is defined on the unit disk D? of C. By Definition 0.1.1 f does
not have an extremum inside D?  so we can suppose that f|sp2
has a finite number of extrema.

In what follows (unless otherwise stipulated) we consider a class
of continuous functions f defined on the unit disk D of C, pseudo-
harmonic in Int D?, and such that flyp2 has a finite number of
extrema.

In [11] Morse and Jenkins explore the following problem. When
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two pseudo-harmonic functions f and g defined on D are the same?

They say that pseudo-harmonic functions f and g are contour
equivalent if there exists an orientation preserving homeomorphism
h : D — D which maps connected components of level sets of f
onto connected components of level sets of g.

They [11] give necessary and sufficient conditions for two pseudo-
harmonic functions on a Jordan domain to be contour equivalent
in terms of so called “stars” of critical and boundary critical points
and “disposition” of critical and boundary critical points with re-
spect to that “stars”.

Notice that the definitions of “stars” and “disposition” in [11]
are informal. They are unclear without pictures.

They also they introduce a “strict” variant of this notion, which
is equivalent to the following

Definition 0.1.3. Two functions f,g : D> — R are called topo-
logically equivalent if there exist orientation preserving homeomor-
phisms hi : D* — D? and hy : R — R such thatf:hglogohl.

In this paper we suggest a more formal approach to study of
topological equivalence of pseudo—harmonic functions. To each
pseudo-harmonic function f we associate a combinatorial diagram
P(f), which is a finite graph with an additional structure (see Sec-
tion 2.1), and prove that two pseudo-harmonic functions on D?
are topologically equivalent if and only if there exists an isomor-
phism of their combinatorial diagrams that preserves this addi-
tional structure (see Theorem 2.2.1).

Note that one can easily deduce from [11] that two pseudo-
harmonic functions on D? are contour equivalent if and only if
there exists an isomorphism of their combinatorial diagrams as
graphs with a selected oriented cycle.

Apart of that we consider the problem of realization. Namely
for a graph with an additional structure we give important and suf-
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ficient conditions when it is a combinatorial diagram of a pseudo-
harmonic function on D? (see Chapter 4).

Authors would like to express their gratitude to their teacher
V. Sharko for problem statement and for his continuous care and
attention; to S. Maksimenko for encouragement, hints and discus-
sions; to V. Sergeichuk for discussing and correcting the introduc-
tion; and to K. Eftekharinasab for checking the English.



Chapter 1

The utility results

1.1 Definitions

Let W C C be a domain bounded by a finite number of simple
closed curves, f : W — R be a continuous function, and let the
restriction f|g5 has a finite number of local extrema.

Definition 1.1.1. We call z9 € W a regular point of the func-
tion f if there exist an open neighbourhood U C W of zo and
a homeomorphism ¢ : U — Int D?* such that ¢(z) = 0 and
foe l(z) =Rez+ f(20) for all z € Int D?.

U is called a canonical neighbourhood of 2.

Let us denote D2 = {z | || <1 and Imz > 0}.

Definition 1.1.2. Call zg € OW a regular boundary point of f if
there exist an open neighbourhood U in the space W and a homeo-
morphism v : U — D% such that ¢(z9) = 0, (U N f~1(f(20))) =
{0} x [0,1), w(UNOW) = (—1,1) x {0} and a function fop~1 is
strictly monotone on the interval (—1,1) x {0}.

A neighbourhood U is called canonical.
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Remark 1.1.1. [t is easy to see that canonical neighbourhood in
Definitions 1.1.1 and 1.1.2 can be chosen arbitrarily small.

If a point zy € Int D? is not a regular point of f it will be called
critical.

Now let f be in addition pseudo-harmonic in W.

Then by definition all critical points of f are saddle. That is for
every critical point zg € W of f there exist an open neighbourhood
U C W of z and a homeomorphism ¢ : U — Int D? such that
©(z0) = 0 and f o p 1(2) = Re(2") + f(20), n > 2 for all z €
Int D?(see [5,21,22]). The number n — 1 will be termed a degree
of saddle point.

A family of single-point connected components of level sets of f
consists of local minima and local maxima of f which are contained
in OW by definition of pseudo-harmonic function.

A point of OW that is neither a boundary regular point nor an
isolated point of a level set of f will be called a critical boundary
point.

Definition 1.1.3. Number c is a critical value of f if level set
f~(c) contains critical points.

Number c is a regular value of f if a level set f=!(c) does
not contain critical points and it is homeomorphic to a disjoint
union of segments which intersect with a boundary OW only in
their endpoints.

Definition 1.1.4. Number c is a semiregular value of f if it is
neither reqular nor critical.

Remark 1.1.2. From definitions it follows that level sets of semi-
regular value contain only boundary critical points and local ex-
trema of [ (they belong to OW and are isolated points of level
sets of f). The level sets of the critical value contain the critical
points and they also can contain boundary critical points and local
extrema.
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It is known that any level set of pseudoharmonic function is
homeomorphic to a disjoint union of trees [5,11,21].

From Theorem 4.1 [22], see also [21], it follows that for any crit-
ical boundary point there exist a neighbourhood (which is called
canonical) and a homeomorphism of this neighborhood onto half-
disk which maps that point to origin and an image of its level set
consists of finite number of rays outgoing from it.

W

a) b)

Figure 1.1: In case a) critical boundary point is a regular point of
flapz but in case b) it is local maximum of f|yp2.

1.2 Weakly regular functions on disk and
their properties

Let W be a domain in the plane R?, f : W — R be a continuous
function. We denote

D*={z]|z| <1}, DI={z||2/]<1and Imz>0}.

Let D be a closed subset of the plane which is homeomorphic
to D?. Let us fix a bypass direction of a boundary circle 0D.

Assume that when we bypass the circle 0D in the positive
direction we consecutively pass through points z1,...,2o,-1, 22n
for some n > 2, and also not necessarily 2z # zp4+1. For every



1.2. WEAKLY REGULAR FUNCTIONS. PROPERTIES 15

k€ {1,...,2n} we designate by v an arc of the circle 9D which
originates in z; and ends in either zp,; when & < 2n or z; if
k = 2n, so that the movement direction along it coincides with
the bypass direction of 0D. Write v, = i \ {2k, 2k+1} when k €

{1, A 1}7 "OYQH = V2n \ {Z2TL7 Zl}'

Definition 1.2.1. Assume that for a continuous function f : D —
R there exist such n = N(f) > 2 and a sequence of points z1,. . .,
Zon—1, Zon € OD (which are passed through in this order when
the circle OD is bypassed in the positive direction) that following
properties are fulfilled:

1) every point of a domain Int D = D\ 9D is a regular point of
[

2) Yop—1 # @ for k € {1,...,n} and every point of an arc Yor_1
is a reqular boundary point of f (specifically, the restriction
of [ onto yop_1 is strictly monotone);

3) arcs yor, k € {1,...,n} are connected components of level
curves of the function f.

We call such functions weakly regular on D.

Proposition 1.2.1. Let f be a weakly regular function on D.

A set Up_y Yo does not contain reqular boundary points of f,
therefore the number N (f) is well defined and coincides with the
number of connected components of the set of regular boundary

points of f.

Proof. Let z € 0D be a regular boundary point of f. Denote by I',
a connected component of level curve of f which contains z. We
fix a canonical neighbourhood U of z and a homeomorphism ¢ :
U— Di from definition 1.1.2. Then, as it could be easily verified,
Y1 ({0} x [0,1)) C T, and @ # ({0} x (0,1)) C I, N Int D.
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Therefore it follows from the condition 3 of definition 1.2.1 that
2 & Up=172%-

Hence, the number of arcs 9,1, k € {1,...,n} coincides with
the number of connected components of the set of regular boundary
points of f. It depends only on f and the number N(f) is well
defined. O

Lemma 1.2.1. Let a function f be weakly reqular on D.

Every connected component of nonempty level set of f is ei-
ther a point zor, k € {1,...,n} if 2o = 2zop+1, 07 a support of a
simple continuous curve v : I — D which satisfies to the following
properties:

e endpoints v(0) and (1) belong to distinct arcs y2j—1 and
Y2k—1; Jvk S {17 .. '7n}; .] 7é k;

o either v(I)\ {7(0),7(1)} C Int D or v(I) = 7o, for a certain
ke{l,...,n}.

Proof. Assume that ¢ € R complies with the inequality f~!(c) #
@. Let us consider a connected component I'. of the level set
f~Y(c). There are two possibilities.

1) Let T, NInt D = @. Then I'. = 79 for a certain k €
{1,...,n}.

Really, if I'c ¢ Uj_; 721 then there exists a regular boundary
point w € I'c. It follows from definition 1.1.2 that a portion of
the connected component I'. which is contained in a canonical
neighbourhood of the point w has a nonempty intersection with
Int D.

But if I’ C [Jj_; 72k then the statement of lemma follows from
property 3 of the definition of a weakly regular function on D.

In the case under consideration the set I'. = 79 is either
a single-point or a support of a simple continuous curve which
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endpoints are contained in the sets yor—1 and 7941 when k €
{1,...,n—1} or in 49,1 and v if k = n.

2) Let T.NInt D # @&. Then the set I'. is a support of a
simple continuous curve v : I — D, with T'.NdD = {7(0),~v(1)} C
Us=1 Y2r—1-

Let us verify this.

It follows from the condition 3 of definition 1.2.1 that I'.N0D C
Uk—1 Y2k—1. Therefore by definition all points of I':NdD are regular
boundary points of f. All remaining points of the set I'. belong to
Int D and are regular points of f.

Denote by © : (—=1,1) — Int D? a mapping

©(s) =(0,s), se(—1,1).

It is clear that © is the homeomorphism onto its image. Denote
also

_@| :[0,1) — D3
[0,1)

This mapping is obviously also the embedding.

Let v € Int DNT'.. By definition v is the regular point of f. Let
U, and ¢, : U, — Int D? are a neighbourhood and a homeomor-
phism from definition 1.1.1. Then o, (f~1(f(v))) = {0} x (=1,1),
therefore ¢, (I'z) = {0} x (—=1,1), a mapping O top, = ®, : Q, =
r'.nU, — (—1,1) is well defined and it maps @, homeomorphically
onto (—1,1). By construction the set @, is an open neighbourhood
of v in the space I'..

So, a map (Qy, P, : Q, — (—1,1)) is associated to every point
veIntDNI..

By analogy, if w € T'. N dD then for its neighbourhood U,
and a homeomorphlsm Uy : Uy — Di, which comply with defini-
tion 1.1.2, a set Qw = Uy, NI, and a mapping ¥,, = SR 0 Yy :
Quw — [0, 1) define a map of the space I'. in the point w.
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Obviously the set I'. with the topology induced from D is a
Hausdorff space with a countable base. Moreover, every point of
this set has a neighbourhood in I', which is homeomorphic to the
interval (0,1) or to the half interval [0,1). Hence I'; is the compact
(it is the closed subset of compact D) connected one-dimensional
manifold with or without boundary. Therefore the space I'; is
homeomorphic either to the circle S* or to the segment 1.

Assume that T'. =2 S'. Let R C D be a closed domain with
the boundary T'.. All points of Int R are regular points of f. From
definition 1.1.1 it follows that a regular point cannot be a point of
local extremum of f. Thus f # const on R, otherwise every point
from Int R should be a point of local extremum of f.

R is the compact set, so the continuous function f should rich
its maximal and minimal values on R. Let f(v') = min,cp f(2),
f(") = max,eg f(2) for certain v'; v € R. We have allready
proved that f(v') # f(v"), therefore one of these two numbers is
distinct from ¢ = f(T';) and one of the points v/, v” is contained in
Int R, hence it is the point of local extremum of f. Then it cannot
be a regular point of f.

From contradiction obtained we conclude that I'. & I, with
a pair of points {zo(c), z1(c)} € Up_; Y2k—1 corresponding to the
boundary of the segment and the rest points of I'. are contained
in Int D. By definition the function f is strictly monotone on each
arc Yor—1, k € {1,...,n}, therefore zo(c) € Y2i—1, z1(¢c) € Y251,
i,j€{1,...,n} and i # j. O

Remark 1.2.1. From condition 2 of Definition 1.2.1 and from
Lemma 1.2.1 it is clear that every level set of a weakly regular
function f has o finite number of connected components in D.

Lemma 1.2.2. Let f be a weakly regular function on D. Then
N(f) =2.

In order to prove this Lemma we need one simple proposition.
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Proposition 1.2.2. Let g : K — R be a continuous function on
a compact K. Then for every ¢ € g(K) and for a basis {U;} of
neighbourhood of ¢ a family of sets {W; = g=*(U;)} forms the base
of neighbourhoods of the level set g~*(c).

Proof of Proposition 1.2.2. Evidently, it is sufficient to prove that
there exists at least one base of neighbourhoods of ¢ € g(K) full
preimages of elements from which form a base of neighbourhoods
of the level set g~*(c).

The space R complies with the first axiom of countability, so
we can assume that the family {U;} is countable.

There exists a countable base {Ui}ieN of neighbourhoods of ¢
such that

Ui+1 QUZ, 1 € N. (1.1)

Really, direct verification shows that the family of sets

Ui = hUm, meN,

m=1

satisfies our condition.

Suppose that a sequence of sets {W; = g~ 1(U;)} does not form
a base of neighbourhoods of g=!(c). Then there exists such a
neighbourhood W of this set that the inequality W; \W # & is
fulfilled for every i € N. We fix z; € W; \ W, i € N. From
the compactness of K it follows that the sequence {z;};en has
a convergent subsequence {xij }ien. Suppose that x is its limit.
Relation (1.1) assures us that the family of sets {Uzj }jen forms the
base of neighbourhoods of ¢. Therefore, without loss of generality
we can assume that ¢ = lim; o ;.

On one hand the family {U;} is the base of neighbourhoods
of ¢ and g(z,) € U, for every n € N. Then it follows from the
relation (1.1) that also g(xy) € U, for every k > n, n € N. From
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this and from the continuity of g we get the following equalities
g(z) = lim; 0 g(;) = c. Hence z € g~ 1(c) C W.

On the other hand z € {z;|i € N} and {z;|[i e N} NW =&
by the construction. Therefore the inclusion z ¢ W have to be
fulfilled.

The contradiction obtained proves proposition. O

Proof of lemma 1.2.2. Let us define for the arc y; a mapping 7 :
71 — 9D in the following way. Let z € 41 and T, C f~1(f(2))
be a connected component of a level set of f which contains z.
We know (see. Lemma 1.2.1) that T', is a support of a simple
continuous curve -y, : I — D and that z is one of the endpoints of
that curve. Let for example z = v,(0). We associate to z another
endpoint of the curve ~,:

T(Z) :’72(1)7 z €Y.

Furthermore we set 7(21) = 2o, 7(22) = 23.

Let us check that the mapping 7 is continuous on ;.

Suppose first that z € 4;. We designate ¢ = f(z). We know
that the level set f~1(c) of f has a finite number of connected com-
ponents (see Remark 1.2.1). Let this number be equal to [ € N. We
fix disjoint open neighbourhoods W1, ..., W, of these components.
Suppose I', C Wi.

It follows from Lemma 1.2.1 and from the condition 3 of Defi-
nition 1.2.1 that 7(z) € Y951 for some k € {2,...,n}. Let V' be
an open neighbourhood of 7(z) in D. Without loss of generality
we can regard that V' NOD C ~y9r_1 U~v1. Let us also take an open
neighbourhood V of z in D such that VN 9dD C v U971 and
VN1 C V.

We fix an open neighbourhood W of the set I', such that W N
dD C VUV'. For example we can take W = VUV’ UInt D, where
Int D = D\ &D. Designate W = W N Wi. Evidently, inclusions
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W NoD C VUV’ are valid, moreover W N y9,_1 C V' by the
construction.

It follows from Proposition 1.2.2 that there exists such ¢ > 0
for the open neighbourhood O = W U Ué:2 W; of the level set
71 (c) of f that @ = f~1(Bs(c)) C O. Here we designate Bs(c) =
{t eR||t — c|] < b}

Denote Qo = QNW, Vo =V NQp. It is evident that z € 1}
and QoNoD CVoUV'.

Let 2/ € vy NVp. Sign by I',s a connected component of a level
set of f which contains z’. Let v, : I — D be a simple continuous
curve with the support I',s such that 7.,(0) = 2’ and ./(1) = 7(2/).
Observe that ',y C @ C O, moreover ',y NQy # @ and the set T',/
is connected. Open sets Qg and @ N Ui:z W; are disjoint by the
construction, so I',s N Ui':z W; =@ and ', C Q.

It is easy to see that {7./(0),7.(1)} € (VoUV')NOD C v U
Yok—1, and also 7,/(0) € ~1. It is evident that fo~,(0) = fo
v (1) = f(2'), hence 7,/ (1) € 7yo,—1 (see. Lemma 1.2.1). But
Qo Ny2k—1 C W N1 C V/, therefore 7(2') = v./(1) € V' and
Vo N 1 € T_l(vl).

From arbitrariness in the choice of z € 4; and of its neighbour-
hood V' it follows that the mapping 7 is continuous on the set
Y-

Suppose now that z = 21 or z3. In the case when z; = 29,
(respectively zo = z3) our previous argument remain true without
any changes.

If the arc 79, (respectively ~2) does not reduce to a single
point then the continuity of 7 in the point z is checked with the
help of argument that are analogous to what was stated above.
The only essential change is that open sets V' and V should be
selected to satisfy correlations (V' UV)NID C 1 Uyap—1 U~van
and V Nygr_1 C V' (respectively (V' UV)NID C v Uvgr—1 U7s
and V Nage_1 C V’). Also a neighbourhood of the set T, = 79,
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(respectively of T, = ~9) should be chosen to comply with the
inclusion WN oD C VUV'UT,. For example W = VUV’ U
Int DUT, will fit.

So, the mapping 7 : v1 — 9D is continuous. Let us explore
some of its properties.

The set 7(v1) is connected (it is an image of the connected
set under continuous mapping) and contains points zz, and zs.
Therefore, it should contain one of the arcs of the circle 9D which
connect these points.

Each point of the set 7(1) except 22, and z3 belongs to

n
U Sor1 -
k=2

Really, as we have observed above if z € 71, then 7(z) € Y91 for
a certain k # 1 (see. Lemma 1.2.1).
By definition 4; N~; = @ when ¢ # j, therefore

)N =2. (1.2)

If n > 3, then
YNT(N) =9. (1.3)

This is the consequence of a simple observation that {zs3, 29, }Ny4 =
@ when n > 3 (see. condition 2 of Definition 1.2.1) together with
the relation 7(71) C {23, zon} U Ujp_g Y2k—1-

To complete the proof of lemma it remains to notice that if
n > 3 then the nonempty sets 41 and -4 are contained in dif-
ferent connected components of 9D \ {z3, 22, } and relations (1.2)
and (1.3) could not hold at the same time, otherwise points z3
and z9, would belong to different connected components of the set
T(7)-

Thus, n = N(f) = 2. O



1.2. WEAKLY REGULAR FUNCTIONS. PROPERTIES 23

Definition 1.2.2. Let for some n > 2 and for a sequence of points
21y, 20n € OD a function f complies with all conditions of Defi-
nition 1.2.1 except condition 8, instead of which the following con-
dition is valid

3') for j =2k, ke {l,...,n} the arc y; belongs to a level set of
I3

We shall call such a function almost weakly regular on D.

Let f be a weakly regular function on D. We denote by 2-N(f)
the minimal number of points and arcs which satisfy the Defini-
tion 1.2.2. Obviously, this number is well defined and depends only

on f.

Proposition 1.2.3. Suppose that for a certain n > 2 and a se-
quence of points z1,...,29n € 0D function f complies with con-
ditions of Definition 1.2.2. If n = N(f), then a family of sets
{Yak—1}}_y coincides with the family of connected components of
the set of regular boundary points of f.

Proof. Let us designate a set of regular boundary points of f by
R. The set R is open in the space 9D by definition, therefore its
connected components are open arcs of the circle 0D.

Let us check that RN Up_; Yor = 9.

Really, for an arbitrary point z € o there exists its open
neighbourhood small enough to comply with the inequality U(z)N
0D C 49, hence from the condition 3’ of Definition 1.2.2 it follows
that U(z) NdD C f~1(z) and a canonical neighbourhood V (z) C
U(z) of z in the sense of Definition 1.1.2 can not exist (see also
Remark 1.1.1).

Let us verify that if yo, N R # @ for some k € {1,...,n} then
Yor = & and yor, = {22k}

Let vor N R # @. Then v, N R C {29k, 2m} = Yok \ Y2k, where
m = 2k+1 (mod 2n). But it is easy to see that if 495 # & then for
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an arbitrary neighbourhood U of 29 in the space D an intersection
U N~y 1s not empty and contains some point 2z’ # 29,. Therefore
{200, 2"} € f7Yf(2)) N U NOD and U can not be a canonical
neighbourhood of 29 in the sense of Definition 1.1.2. Similar is
also true for z,,. Consequently, if Yo, # @ then {zof, 2} "R = &
and yop, N R = &.

Let n = N (f).

Let us check that RN Up_; yor = &.

Really, if v N R # @ for some k € {1,...,n} then zop = 2,
m = 2k + 1 (mod 2n) and 7o, = {z29x} C R. Then the open
arc Yorp_1 U Yok U Y is contained in R so we can throw off the
points zor, 2z, and replace three consequent arcs yor_1, Yok, Ym,
m = 2k+1 (mod 2n) by the arc v _1 U7y Uy, in order to reduce
the quantity of points and corresponding arcs in the collection

{z1,...,22,}. But it is impossible since the quantity of points 2n
is already minimal.
It is obvious that D = Ui ;v2k U Up—q 92641 and

Ur—1 32k+1 C R, therefore
n
R= U Yok+1
k=1

and the family {jor—1}7_; of disjoint nonempty connected sets
which are open in 0D coincides with the family of connected com-
ponents of the set R of regular boundary points of f. O

Lemma 1.2.3. If f : D — R is almost weakly reqular on D and
N(f) =2, then f is weakly regular on D.

Proof. It N(f) = 2, then the frontier D of D consists of four arcs
1, - -.,74, where arcs v, and -3 are nondegenerate and f is strictly
monotone on them. On each of the arcs 2 and 4 function f is
constant and each of these arcs can degenerate into a point. Let
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Z6 = 27

Z10 = %1

Figure 1.2: An almost weakly regular on D function f with N'(f) =
5. w € 79 is a regular boundary point of f.

v € F7H), 4 € f7Y("). From the strict monotony of f on 71
we conclude that ¢’ = f(z1) = f(ya) # f(72) = f(z2) = . Let
¢ < ¢’ for definiteness.

Every interior point of D is regular, hence local extremum
points of f can be situated only on the frontier 0D. From what
we said above it follows that f(D) = [¢/, "] and every point of
the set f~1(c') U f~1(c") is a local extremum point of f on D.
Therefore f~1(¢') U f~1(¢") € dD. But f~1() N dD = v and
f~H")NOD = ~4. Consequently f~1(c/) =72, f~(¢") = 4 and
f is weakly regular on D. O

Remark 1.2.2. There exist almost weakly regular on D functions
with N'(f) > 2, see Figure 1.2.
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1.3 On level sets of weakly regular functions
on the square 2.

Let W be a domain in the plane R2, f : W — R be a continuous
function.

Definition 1.3.1. A simple continuous curve v : [0,1] — W is

called an U-trajectory if fo~y is strongly monotone on the segment
[0,1].

We designate I = [0,1], 12 = [ x I C R2, [2 = Int]% =
(0,1) x (0,1).

Let us consider a continuous function f : I? — R which com-
plies with the following properties:

o f([0,1] x {0}) =0, f([0,1] x {1}) = 1;
e cach point of the set I?isa regular point of f;

e every point of {0,1} x (0,1) is a regular boundary point of
i
e for any point of a dense subset I" of (0,1) x {0, 1} there exists

an U-trajectory which goes through this point.

Proposition 1.3.1. Function [ is weakly reqular on the square
I2.

Proof. We take z; = (1,0), z2 = (1,1), 23 = (0,1), z4 = (0,0). It
is obvious that f is almost weakly regular on I? for this sequence of
points and that AV'(f) = 2. Then as a consequence of Lemma 1.2.3
this function is weakly regular on the square I2. O

Corollary 1.3.1. f(z) € (0,1) for all z € I x (0,1). Moreover
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e for every c € (0,1) level set f=1(c) is a support of a simple
continuous curve . : I — 120 such that (.(0) € {0} x (0,1),
G(1) € {1} % (0,1), &(t) € 12 Vit € (0,1);

e level sets f71(0) = Ix {0} and f~1(1) = I x {1} are supports
of simple continuous curves.

Proof. This statement follows from Lemma 1.2.1. O

Lemma 1.3.1. Let v € I2. For every e > 0 there exists § > 0 that
satisfies the following property:

(ELC) if a set f~Y(c) is support of a simple continuous curve
Co: I — I? for a certain ¢ € (0,1) and (.(s1), Cc(s2) €
Us(v) ={z | |z —v| < 6} for some s1, s2 € I, s1 < s3,
then (c(t) € Us(v) for all t € [s1, s2].

Remark 1.3.1. Fulfillment of the (ELC) condition is an analog
of so called equi-locally-connectedness of a family of level sets of
[ at a point v € I? (see [40]).

Proof. Let contrary to Lemma statement there exist € > 0, a se-
quence {d;} of function f values, a family {¢;} of simple Jordan
curves with supports {f~"(d;)}, and also sequences {s}, {s/} and
{7j} of parameter values, such that correlations hold true

sy <1 <s] VjeN,
lim Cj(s;) = lim Cj(s;’) =,
j—00 j—00
dist(Cj(rj),v) > e VjeN.
We shall denote v; = (j(s}), vj = ((s7), w; = (;(75), j € N.

From the compactness of square it follows that the sequence
{w;} has at least one limit point. Going over to a subsequence we
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can assume that this sequence is convergent. Let its limit be w.
The continuity of f implies

d = lim d; = lim f(G()) = F(w) = f(0).

Let us fix a simple continuous curve (g : I — I? with the
support f~1(d). Then v = (4(s), w = (q4(7) for certain values of
parameter s, T € [, s #£ T.

We consider the following possibilities.

Case 1. Let d ¢ {0,1}.

We fix ty € I such that one of pairs of inequalities s < tg <
T or T < tg < s holds true. Designate zg = (4(t9). We note
that it follows that ¢9 ¢ {0,1} from the choice of ty, therefore
Corollary 1.3.1 implies inequality zo ¢ {0,1} x I, which in turn
has as a consequence inclusion zg € 12 = Int I2.

Definition 1.1.1 implies that for a certain o > 0 through z
passes an U-trajectory 7o : I — I? such that v9(0) € f~1(d — «),
Y0(1) € f7Hd + ), v(1/2) = 2. Moreover, if necessary we can
decrease « as much that the curve vy will not intersect lateral sides
of the square I2.

Let us consider a curvilinear quadrangle J bounded by Jordan
curves (4—q = fﬁl(d_a)a Cdta = fﬁl(d""a% o = fﬁl([d_avd""
a)N{0}x 1), m = f~Hd—a,d+a])N ({1} x I). It is clear that
this quadrangle is homeomorphic to closed disk.

Ends (4(0) and (4(1) of the Jordan curve (4 are contained in lat-
eral sides of J, namely (4(0) € 1o, ¢4(1) € m (see Corollary 1.3.1).
From the other side by construction the curve =g is a cut of the
quadrangle J between the points v9(0) € (43— and Y(1) € (4ta
which are contained in its bottom and top side respectively.

From what we said above it follows that the set J \ 70([) has
two connected components Jy and Ji, moreover 79 and n; are
contained in different components. Let ng C Jy, m1 C J1.
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It is obvious that vo(1)N¢q(I) = {20} = {Ca(to)}. Hence points
v and w belong to different components of J \ yo().

Really, if s < tg < 7 then (4([0,s]) € Jo, Ca([T,1]) C Ji,
because (4([0, s]), Ca([T,1]) € J\0(I), these sets are connected and
inequalities are fulfilled @ # (4([0, s]) N Jo 2 (a(0), @ # Ca([T, 1]) N
J1 3 (4(1). By analogy, if 7 < tg < s then (4([0,7]) C Jy and
Ca([s,1]) € Ju.

Let V and W are open neighbourhoods of the points v and w
respectively, and one of these sets does not intersect Jy, the other
has an empty intersection with .J;. Existence of such neighbour-
hoods is a consequence from the following argument: if for a certain
m € {0,1} the point z does not belong neither to the set .J,,, nor
to the curve g, then z € Int (R?\ J,,) since J,, = Jpm U o(I).

So, one of the sets Vp = VN J, Wy = W N J belongs to Jy,
other is contained in Jj.

Fix so big k € N that v, v € V,wp, € W, di, € (d— a,d+ ).
Then v}, v}, wp € (1) = f~Y(dg) C J and v}, v} € Vo, wy €
Wy. Thus the ends of both simple continuous curves (([s},, 7%])
and (i ([7g, s7]) are contained in different connected components of
J \ 70. Therefore there exist t' € (s},,7%), t" € (7%, s}) such that
Ce(t'), C(t") € yo(I).

By construction we have (;(t') # (i(t”), but this is impossible
since the arc g is U-trajectory and should intersect a level set
f~Y(dy) = ¢x(I) not more than in one point. This brings us to the
contradiction with our initial assumptions and proves Lemma in
the case 1.

Case 2. Let d € {0,1}.

Obviously, (4(I) is a connected component of the set I x {0, 1}.
Therefore the set I'N (4(I) is dense in (4(I). Mapping (4 is home-
omorphism onto its image, hence the set IV = Cd_l(F N ¢q(I)) is
dense in segment. We fix tg € I such that one of the following
pairs of inequalities s < g < 7 or 7 < tg < s is fulfilled. Denote
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20 = C4(tp). By the choice of ¢y there exists a U-trajectory which
passes through zg.

Further on this case is considered by analogy with case 1 with
evident changes. O

Let us recall one important definition (see [24,41]). Let «,
B : I — R? be continuous curves. We designate by Auty(I) a set
of all orientation preserving homeomorphisms of the segment onto
itself. For every H € Auty(I) (H(0) = 0) we sign

D(H) = r?gxdist(a(t),ﬂ o H(t)).

Definition 1.3.2. Value

distr(o.f) = inf D(H)

is called a Frechet distance between curves o and (3.

For every value ¢ € I of a function f we can fix a parametriza-
tion ¢. : I — R2 of the level set f~!(c) in such way that an
inclusion (.(0) € {0} x I holds true (see Corollary 1.3.1). The
following statement is valid.

Lemma 1.3.2. Let c € I. For every € > 0 there exists § > 0 such
that distr (e, (q) < € when [c —d| < 4.

Proof. Let c € I, (. : I — I? be a simple continuous curve with a
support f~!(c). Let e > 0 is given.

Let us find for every ¢ € I a number §(t) > 0 which satisfies
Lemma 1.3.1 for a point (.(¢) and é = /2.

We consider two possibilities.

Case 1. Let ¢ € (0,1). It is clear that for every ¢t € I there exists
a neighbourhood U(t) of (.(f) which complies with the following
conditions:
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o U(t) C Usty(Ce(t));

e U(t) is a canonical neighbourhood from Definition 1.1.1 when
t € (0,1) or from Definition 1.1.2 for ¢t € {0,1}.

Let a family of sets
Uy=U(0), U =U(t1),...,Up—1=U(tp-1), U,=U(1),

forms a finite subcovering of a covering {U(t) };es of the compact
7).

We denote z; = (o(t;), Ji = (CHU; N 7)), i € {0,...,n}.
By construction a family of sets {J;}}, is a covering of I. From
Definitions 1.1.1 and 1.1.2 it follows that

Jo2[0,1), J,=(0,1];  J;=(0,1), ie€{l,...,n—1}.

If necessary we decrease neighbourhoods U; as much that on
one hand they remain canonical and form a covering of f~!(c) as
before, on the other hand no two different intervals from the family
{Ji}i~y should have a common endpoint.

It is straightforward to prove that there exists a finite sequence
of numbers 0 =19 <71 < ... < Tm_1 < Tyn = 1, which satisfies a
condition:

e for every k € {1,...,m} there exists i(k) € {0,...,n} such
that 7,1, 7% € Ji(k)-

We fix such a family {7;}}", and denote by 6 : {1,...,m} —
{0,...,n} amapping 0 : k — i(k). We also designate wy = (.(7%),
ke{0,...,m}.

From Definitions 1.1.1 and 1.1.2 it follows that through every
point wy, k € {0,...,m} passes an U-trajectory v, : [ — I?
which complies with inequalities f o 7;(0) < ¢ < fox(1). We
can also assume that vo(I) C {0} x I and 7, (I) C {1} x I (see
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Definition 1.1.2). If necessary we decrease these U-trajectories
as much that they should be pairwise disjoint and for every k €
{0,...,m} relations v, 1 (1), 7() C Ug(x should hold true (that
can be done since the curves ~; are continuous and by construction
inclusions wg—1, wy € Uy are valid). Let us designate

5= mi i 0) — ¢, 1) —¢f).
ke{l(l)l,.l.r.l,m}mm(|f0%( ) =l [fom(l) —¢f)

Suppose that an inequality |¢ — d| < ¢ holds true. Then by
construction a simple continuous curve (g : I — I? with the sup-
port f~!(d) must intersect every U-trajectory . in a single point
w. Denote 7 = ¢, (wi), k € {0,...,m}.

By choice of parameterization of curves (. and (g we have (.(j),
Ca(5) € {j} x I, j = 0,1. Therefore w € v(I) when k = 0 or m,
and 7§ =0, 74 = 1.

We designate K = [min(c, d), max(c,d)]. Let us consider a
curvilinear quadrangle R bounded by curves (., vo(I) N f1(K),
Ca, YD) N f7YK). Curves ()N f~YK), ke {1,...,m — 1}
form cuts of this quadrangle between top and bottom sides and
are pairwise disjoint. The straightforward consequence of this fact
is that corresponding endpoints {wy} and {w{} of these cuts are
similarly ordered on the curves (. and (3. Therefore

0=rd<r<... <7l  <7d=1.

Let a mapping H : I — I translates 73 to Tg for every k and a
segment [7j,_1, 7% linearly maps onto [t |, 7], k € {1,...,m}. It
is clear that H € Aut(1).

Let us estimate the value of D(H). By construction for every
ke{l,...,m} we have

d d
Wh—1, Wk, W1, Wi, € Up(ry
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therefore, it follows from the choice of neighbourhood Up(y) of the
point zg(;) and from Lemma 1.3.1 that

Cel[The1,7k]); CallTi_1, 7]) € Ueya (k)

and for every t € [1;_1, 7] an inequality dist({.(¢),(q0 H(t)) < ¢
holds true.
From what was said above we make a conclusion that

dist7(Ce, Ca) < D(H) =

= a ax dist((.(t), H(t)) <e,
ke?ll,..?j:m} te[g:_im] i5t(Ge(t), 6a 0 H(1))

if e —d| < 6.

Case 2. Let ¢ € {0,1}. In this case proof mainly repeats
argument of the previous case with the following changes.

We know already that a set I = (. 1(T' N ¢.(I)) is dense in
segment (see the proof of Lemma 1.3.1). Moreover, every point of
the set {0,1} x (0,1) is a regular boundary point of f. Therefore,
on each of lateral sides of the square f is strongly monotone, hence
both of lateral sides of the square are supports of U-trajectories,
and 0,1 € T".

The set (/) in the case under consideration is the linear seg-
ment, so we can select a covering {U(t)}er from the following
reason:

o U(t) = Us(r)(Ce(t)) for t =0, 1;
U

(t) = Us()(Ce(t)), where 0'(t) < min(d,¢,1 —t) when t €
0,1).

—~

After the choice of numbers 0 = 9 < 14 < ... < 7, = 1 is
done, we can with the help of small perturbations of 7, ..., 7m—1
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achieve that {79,...,7m} C IV and a family {7} keeps its prop-

erties (see case 1). Then for every k € {0,...,m} there exists an
U-trajectory which passes through (.(7%).
Subsequent proof repeats the argument of case 1. O

Let us remind several important definitions.

Let A : I — R? be a continuous curve. For every n € N we
designate by S,(\) a set of all sequences (p; € A([)), of the
length n + 1, such that p; = A(;), ¢ = 0,...,n, and inequalities
to <t1 <...<t, hold true. Denote

d(po,...,pn) = I{linndist(pi_l,pi) .

i=1,...,

Definition 1.3.3 (see [24,41]). Let A : I — R? be a continuous
curve,

pn () = sup d(po,...,pn), mneN.
(P0s+-sPn)ESn(N)

Hx = Z ,unzi)\)

neN

A value

is called p-length of A.

Let again A : I — R? be a continuous curve. We consider a
family of continuous curves N\, : I — R2, \(7) = A(t7), t € L.
Let p(t) = py,, t € I, be a p-length of the curve A from 0 to ¢.
It is known that u continuously and monotonically maps I onto
[0, pa]. It is found that for an arbitrary continuous curve A and
for every ¢ € [0, uy] a set A(~1(c)) is singleton. Hence a mapping
a2 [0, ] — AMI) C R2, ry(e) = AMu=L(c)), is well defined. It is
known also that this mapping is continuous.

Definition 1.3.4 (see [24]). A curve r) is called a p-parameteri-
zation of A.
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We say that a continuous curve n : I — R? is derived from
a continuous curve \ : I — R? if there exists such a continuous
nondecreasing surjective mapping u : I — I that n(t) = X o u(t),
t € I. It is known that an arbitrary curve A is derived from
its p-parameterization ry (see [24]). Therefore, if X is a simple
continuous curve, then ry is also a simple continuous curve.

Definition 1.3.5 (see [24]). Class of curves is a family of all con-
tinuous curves with the same u-parameterization.

It turns out (see [24]) that the Frechet distance between curves
does not change when we replace curves to other representatives of
their class of curves. Consequently Frechet distance is well defined
on the set of all classes of curves. Moreover it is known that Frechet
distance is the distance function on this set. We shall denote metric
space of classes of curves with the Frechet distance by M (R?).

We consider a set R C M(R?) x R,

R = U {()‘77_)|7—€ [O,M)\]},
AEM(R2)
and a correspondence ¢ : R — R?,
Q()‘v 7-) = TA(T) ) ()‘7 T) €ER,

which maps a pair (A, 7) to a point of the curve X such that p-length
of A from A(0) to this point equals 7. It is known (see [24]) that
the mapping ¢ is continuous. This allows us to prove following.

Lemma 1.3.3. Let ¢ : [ — M(R?) be a continuous mapping such
that pyy > 0 for every t € I.
Then a map ® : I? — R?,

(7,t) = 1oy (o) - T) . (T,) € 17,

is continuous and for any t € I correlation ®(I x {t}) = p(t)(I)
holds true.
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Before we begin to prove Lemma we will check following state-
ment.

Proposition 1.3.2. Let [a,b] C R and o, § : [a,b] — R be such
continuous functions that a(z) < f(z) for every x € [a,b]. Let

K = {(,5) € B2 |z € [a,b],y € [a(a), )]}
Then a mapping G : [a,b] x [ — K,
Gl t) = (o, 15(x) + (1 D)a(x)
is homeomorphism.

Proof. We shall consider G as a mapping [a,b] x I — R2.

It is known (see [9]) that a mapping ® : X — [, Y, is contin-
uous iff a coordinate mapping pr,o® : X — Y, is continuous for
every o.

It is easy to see that coordinate mappings prj oG : (z,t) — =z
and pryoG(z,t) = tf(x) + (1 — t)a(x), (z,t) € [a,b] x I, are
continuous since they both can be represented as compositions of
continuous mappings. Therefore G is also continuous.

The mapping G is injective. It transforms linearly every seg-
ment {z} x I onto a segment {z} x [a(z), B(x)]. It is clear that the
subspace K of the plane R? is Hausdorff and G([a,b] x I) = K.
The space [a,b] x I is compact, therefore G is homeomorphism
onto its image K. O

Proof of lemma 1.8.8. Let us consider a set

K ={J{(e.n) |7 €0, pp0)]}

cel
and a mapping ¥ = ¢ x Id : K — R C M(R?) x R,

U(e,7)=(p(c),7), (c,7) € K.
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It is clear that this mapping is continuous since both projections
pr1 = ¢ and pre = Id are continuous.

We consider also a continuous mapping § = go ¥ : K — R?,
0(c,T) = 1) (7), (c;7) € K. Obviously, following equalities hold
true

9({0} o [07 Mgo(c)]) = r@(c)([07 :U’go(c)]) = SD(C)(I) :

We denote a(t) = 0, B(t) = pye), t € I. It is known (see [24])
that a function which associates to a continuous curve X its u-
length 1y is continuous on the space M(RR?), therefore functions
a and [ are continuous. Moreover, a(t) < 3(t) for every t € I by
condition of Lemma. We apply Proposition 1.3.2 to K and get a
homeomorphism G : I? — K, G(t,7) = (t, pp(y - 7), (¢, 7) € I?
such that G({t} x I) = {t} x [0, py(e)] for all t € I.

Let us consider also a homeomorphism T : I2 — I?, T(x,y) =
(y,), (z,y) € I? and a continuous mapping ® =f0oGoT : I? —
R2

(I)(Tv t) =0o G(tv 7—) = 9(t7 Hep(t) '7—) = To(t) (Ugo(t) : T) ) (7—7 t) € I2 :
This mapping complies with the equalities
(I x {t}) = 00 G({t} x I) = O({t} x [0, ppp)]) = (£)(I) -

Lemma is proved. O

1.4 Rectification of foliations on disk which
are induced by regular functions.

What we said above allows us to prove the following theorem.

Theorem 1.4.1. Let a continuous function f : I> — R complies
with the following conditions:
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F([0,1) x {0}) =0, f([0,1] x {1}) = 1;
o cvery point of the set I? isa reqular point of f;

e all points of a set {0,1} x (0,1) are regular boundary points
of |

e through any point of a subset T dense in (0,1) x {0,1} passes
a U-trajectory.

Then there exists a homeomorphism Hy : I? — I? such that
H¢(z) = z for all z € I x {0,1} and f o Hy(x,y) = y for every
(z,y) € I?.

Proof. For every value ¢ € I of the function f we fix a parametriza-
tion (. : I — R? of the level curve f~!(c) to satisfy equalities
¢:(0) € {0} x I (see Corollary 1.3.1).

We consider a mapping ¢ : I — M(R?), p(c) = (., c € I. From
Lemma 1.3.2 it follows that this map is continuous. Moreover, it
is known (see [24]) that for every continuous curve A an inequality
px > (diam A(1))/2 holds true. Therefore pe, > 0 for every ¢ € I
and ¢ complies with the condition of Lemma 1.3.3.

Let @ : I — R%, ®(1,t) = r¢, (e, 7), (7, ) € I? is a continuous
mapping from Lemma 1.3.3. Then

o(12) = | Jo(r x {e}) = | Jlh) = | £ (0) = 12.
cel cel cel

For every simple continuous curve (., ¢ € I, its u-parametriza-
tion r¢, is a simple continuous curve, so for every ¢ € I a mapping

(I)‘Ix{c} I x{c} — ¢(1)

is injective. More than that, when ¢ # d we obviously have

B x {e}) NO(I x {d}) = C(I) N GalD) = F )N 1 (d) = 2.
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Therefore ® is injective mapping. It is known that a continuous
injective mapping of compact into a Hausdorff space is a homeo-
morphism onto its image, hence ® : I? — I? is homeomorphism.

Let us denote Hy = ®. It is obvious that Hf(z,y) € (,(I) and
¢(1) = £ (y), s0 f o Hy(a,y) = y for all (z,y) € I

It is straightforward to prove that if a support of a continu-
ous curve A : I — R? is a linear segment of the length s, then
pn(A) = s/n, n €N,

S 1
=D =S S=0 o
neN neN

and 7y : [0, un] — A(I) maps a segment [0, uy] = [0, s - S] linearly
onto A(I).
Consequently

Hf(Tv 0) = (I>(Ta 0) = TC()(IUCO ) T) = (Ta 0)7
H¢(1,1) = ®(1,1) =r¢ (poe, -7) = (1,1), T€l.
So, H¢(z) = z for all z € I x {0,1}. O

Corollary 1.4.1. Let a continuous function f : I*> — R complies
with all conditions of Theorem 1.4.1 except the first one, instead
of which the following condition is fulfilled:

e f([0,1]x{0}) = fo, f([0,1]x{1}) = fi for certain fy, f1 € R,
Jo# f1-

Then there exists a homeomorphism Hy : I? — I? such that
H(z) =z for all z € I x{0,1} and foHs(z,y) = (1—y)fo+yfi
for every (z,y) € I%.

Proof. Let us consider a homeomorphism h: R — R,

h(t) - ;lif;O ‘
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An inverse mapping h~! : R — R is given by a relation h=!(7) =
(fi—=for+fo=7f+1~-1)fo.

It is clear that a function f = ho f satisfies condition of Theo-
rem 1.4.1. Therefore there exists a homeomorphism H; : I? — I?
which fixes top and bottom sides of the square and such that
foHp(x,y) =y, (v,y) € I*. Then fo Hy(z,y) = h™"o fo
Hi(z,y) = h=Y(y) =yfi + (1 —y)fo, (z,y) € I? and the mapping
Hy=H 7 complies with the condition of Corollary. O

We shall need the following lemma.

Lemma 1.4.1. Let [a,b] € R and «a, B : [a,b] — R are such
continuous functions that a(t) < B(t) for every t € [a,b]. Let

K = {(.I',y) S RQ |y S [aab]ax € [a(y)vﬂ(y)]}>
K = {(z,y) e R?|y € (a,b),z € (a(y), B(y))}.

Suppose that a continuous function f : K — R satisfies the follow-
g conditions:

o f([afa), B(a)] x{a}) = fo, f([a(b), B(b)] x{b}) = f1 for some
Jo # f1;

o cvery point of the set K is reqular point of f;

e all points of the set {(z,y) |y € (a,b),z € {a(y),B(y)}} are
reqular boundary points of f;

e through any point of a set I’ dense in ((a(a), B(a)) x {a}) U
((cx(b), B(b)) x {b}) passes an U-trajectory.

Then there exists a homeomorphism Hy : K — K such that

Hy(z) = z for all z € ([a(a), B(a)] x {a}) U ([e(b), B(b)] x {b}) and
foH(zy)=(b-yfo+(y—a)f)/(b—a)
for every (x,y) € K.
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Proof. Let T : I? — I?, T(z,y) = (y,7), (z,y) € R% Let us
designate by pry, pry : R? — R projections on corresponding coor-
dinates.

We consider a set KT = {(z,y) | T(x,y) € K} and use Propo-
sition 1.3.2 to map it onto a rectangle [a,b] x I with the help of a
homeomorphism G. Note that on construction pry oG(z,y) = z,
(z,y) € KT.

Let us examine a homeomorphism G = ToGoT : K — I x[a, b]
and a linear homeomorphism L : I x [a,b] — I?, L(z,y) = (z, (y —
a)/(b—a)), (z,y) € I x[a,b]. Denote F = LoG : K — I?. Clearly
F is homeomorphism. It is easy to see that pry oé(:z:,y) =y,
(x,y) € K, hence pryoF(z,y) = (y — a)/(b— a) for every (z,y) €
K.

Consider a continuous function f = fo F~!: 12 — R. A
straightforward verification shows that f complies with condition
of Corollary 1.4.1, therefore there exists a homeomorphism Hf :

I? — I? which is identity on the set I x {0,1} and such that
fon(l',y) - f1y+ fO(l _y) for all (xay) € 12'

Let us denote Hy = F-1 onoF : K — K. It is easy to see
that

F((la(a), B(a)] x {a}) U ([a(b), BO)] x {b})) =1 x {0,1},

therefore form Corollary 1.4.1 it follows that Hy(z) = F~'o Hjo
F(z) = F'oF(z) = z for every z € ([a(a),B(a)] x {a}) U
([e(b), B(D)] x {b}).

Moreover, for every (z,y) € K we have fo Hy(x,y) = fo
F~1lo Hjo F(z,y) = fo Hjo F(z,y) = fit + fo(1 — 7), where
T =pryoF(z,y) = (y—a)/(b—a). Taking into account an equality
1—7=(b—1y)/(b— a), finally we obtain

(y—a)fi+(b—y)fo
b—a ’

foHp(z,y) = (x,y) € K.



42 CHAPTER 1. THE UTILITY RESULTS

Lemma is proved. O

Let us introduce following notation: a— = (—1,0), ay = (1,0),

Ei:{sz\glamd Imz > 0},
D2 ={z]|z] <1and Imz > 0},
S, ={z||zl=1and Imz >0}, S, =5, \{a_,as}.

Theorem 1.4.2. Let a continuous function f : Ei — R complies
with conditions:

o cvery point of the set Di s a reqular point of f;

® a certain point v € §+ 1s local mazimum of f, all the rest
points of S1 are regular boundary points of f;

o f([=1,1] x{0}) =0, f(v) =1;

e through every point of a set T' which is dense in (0,1) x{0,1}
passes an U-trajectory.

Then there exists a homeomorphism Hy : ﬁi — ﬁi such that
Hy(z) :j2f07‘ all z € [=1,1] x {0} and fo Hf(xz,y) =y for every
(z,y) € D C R?.

Proof. We designate by y_ and 74 close arcs which are contained
in S; and join with v points a— and a4 respectively. Let y_ =
v—\{a—,v} and ¥4 = ~v4 \ {a4, v} are corresponding open arcs.
It is clear that on each of the arcs v— and 4 function f changes
strictly monotonously from 0 to 1.

Similarly to Proposition 1.3.1 we prove that f is weakly regular
on Ei. Like in Corollary 1.3.1 from this follows that f(z) € (0,1)

forall z € ﬁi\ (([-1,1]x{0})U{v}) and for every ¢ € (0,1) alevel
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set f _1(6) is a support of a simple continuous curve (. : I — 51,
with ¢.(0) € 5, (1) € 44 and (.(t) € D2 when t € (0,1).

We apply Proposition 1.2.2 to a level set f~!(1) = {v} and find
an increasing sequence of numbers 0 = ¢g < ¢; < 2 < ... < 1,
limg_, o ¢ = 1, which satisfies the following requirement: f~!(c) C
Ul/k( v) for all ¢ > ¢k, k € N. Here Uc(v) = {z € Ei | dist(z,v) <
e} is a e-neighbourhood of v

Let Ck = (o I — D be sunple continuous curves with
supports f Yer), k € N. Let also Co : I — f710) = [-1,1] x
{0} c DY, f(t) = (2t — 1,0). We denote a¥ = ,(0) € 4_,

ak = Gu(1 ) € 44 (see above), a® =a_, a% = a.
Let 4% : T — ~v_, k € N, be simple continuous curves such that
Ak (0) = a*, 4% (1) = o**!. By analogy we fix simple continuous

curves X : I — 74 such that 7% (0) = ok, 7% (1) = affrl.

We also designate b* = (—,/1 — 2, cr), b’i =(y/1—c3,cx) €
S+, k>0.

For every k > 0 we fix three continuous injective mappings
VK Ck: [ \/1—ck,\/1—ck}><{ck} 1/1"“' _()—>S+and
LA fy+(I) — Sy, which satisfy requirements: ¢(0) = ¥*(0) =
WY, pr(l) = Qp_’i(o) = bli, Yk (1) = prHL, w_’i(l) = b{frl. We can
regard that ¢o = id : [-1,1] x {0} — [—1,1] x {0} is an identity
mapping.

Let us consider following simple continuous curves

fk:gokogk:fﬁ [—\/1-0%,\/1—cz] x {ck} Cbi_,
k— gk onk nﬁ:qﬁioyf_:f—)SJr, k>0.

Let Ji, be a curvilinear quadrangle bounded by curves v* fk, fy_]f_

and C~k+1; and

Ik:{(af y) |y € [er, crqal, we[ V- 2’\/1_'”2“
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Epit bf‘l
i nk
&k V\ b

Figure 1.3: A homeomorphism @y, : J — I

be a curvilinear quadrangle bounded by curves n*, &, nfi and
€pr1. Tt is clear that the mappings ¥* , oy, Mi and @41 induce a
homeomorphism @2 : 0J — 0l of a boundary 0Jy of the set Ji
onto a boundary 9}, of I}, moreover on the set CN;C(I) = 0J,_1NOJy,
mappings @2_1 and @2 coincide for every k € N.

We use theorem of Shoenflies (see [26,43]) and for every k > 0
continue the mapping @2 to a homeomorphism @y, : J, — Ij (see
Figure 1.3). Remark that by construction homeomorphisms ®j_q
and ®;, coincide on a set fk(I) = J,_1NJ for all k € N.

For every k > 0 we consider a function f o (D,;l Iy — R
A straightforward verification shows that this functions complies
with the condition of Lemma 1.4.1 with fy = ¢ and f1 = cgy1.
Therefore there exists a homeomorphism Hy, : I, — I, which is an
identity on a set &,(1) U &k+1(1) and such that

fo‘I’Elon(fﬂay) = (k1 — Yo+ W — k) =y, yel.

Ck+1 — Ck

It is obvious that by construction homeomorphisms <I>,;110H k—1
and @,;1 o Hy, coinside on the set & (1) = Ix_1 NI for every k € N.
Therefore we can define a mapping Hy : Ei — 51,

(I)lzl © Hk($7y) ) if (IS [ck7ck‘+1] ;

Hy(z,y) = {,U’ if (z,y) = (0,1),
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and by construction it satisfies the relation f o Hy(z,y) = y,
(x,y) € Ei.

It is easy to see that this mapping is bijective. Moreover
H(2) = ¢p'(2) = 2z when 2z € [~1,1] x {0}. The set Ei is
compact, so for completion of the proof it is sufficient to verify
continuity of Hy.

Let us consider the set D, = Ei \ {(0,1)} and its cover-
ing {Iy}r>0. This covering is locally finite and close, so it is
fundamental (see [9]). Moreover by construction all mappings
Hy¢lp, = <I>,;1 o Hy, are continuous. Consequently, the mapping
Hy is also continuous on D,.

In order to prove the continuity of Hy in the point (0,1) we
observe that a family of sets

—2
Wi ={(z,y) € Dy |y >} =
—2
={(@,y) e Dy |foHp(z,y) >}, keN,
forms the base of neighbourhoods of (0,1). We sign
—2
szHf(Wk)z{(x,y)€D+\f(x,y)>ck}, keN.

According to the choice of numbers {c}r>o for every ¢ > ¢4
the inequality f~*(c) C Uy, (v) holds true, k € N. So

Vi € Uyyp(v), keN.

A family of sets {U; 4 (v) }ren forms the base of neighbourhoods of
v = Hy(0,1) and for every k € N the inequality Hf_l(Ul/k(v)) 2
Wy = Hf_l(Vk) is valid. Consequently, the mapping H is contin-
uous in (0, 1), and hence it is continuous on Ei.

Theorem is proved. O

Similarly to 1.4.1 the following statement is proved.
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Corollary 1.4.2. Assume that o continuous function f : Ei —R
complies with the requirements:

o cvery point of the set Di s a regular point of f;

e a certain point v € §+ 1s a local extremum of f, all the rest
points of Sy are regular boundary points of f;

o f([-1,1]x{0}) = fo, f(v) = f1 for some fo, f1 € R, fo # f1;

e through every point of a set T', which is dense in (0,1)x{0,1},
passes an U-trajectory.

Then there exists a homeomorphism Hy : Ei — Ei_ such that
Hy(z) = z for all 2 62 [—1,1]x{0} and foH¢(z,y) = (1-y)fo+yfi
for every (z,y) € D

Corollary 1.4.3. Let a continuous function f : D> — R satisfies
the conditions:

o cvery point of the set Int D? is a regular point of f;

o certain points vi,v_ € S = 0D? are local mazimum and
minimum of f respectively; all other points of S are regular
boundary points of f;

Then there exists a homeomorphism Hy : D? — D? such that

fon(x,y): (1_y)f(v—)—;(l+y)f(v+)’ (fL‘,y)ED2.
Proof. Similarly to Proposition 1.3.1 it is proved that the function
f is weakly regular on D?.

Let v1, v2 = {v_}, 73 and 4 = {v4} be the arcs from Def-
inition 1.2.1. By analogy with Corollary 1.3.1 it is proved that
f(z) € (f(vo), f(vy)) for all z € D?\ {vy,v_}, and also for each
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c€ (f(vo), f(vy)) alevel set f=1(c) is a support of a simple con-
tinuous curve (. : I — D? moreover (.(0) € 41, (1) € 43 and
(c(t) € Int D? for t € (0,1).

Let cg = (f(v=) + f(v4))/2. Tt is straightforward that a set
f~(co) divides disk D? into two parts, one of which contains the
point v_, the other contains v;.. We denote closures of connected
components of D?\ f~!(co) by D_ and D, respectively. Each of
these sets is homeomorphic to closed disk and correlations D_ =
{z € D2\ () < ah, Dy = {z € D?| f(2) = co}, v_ € D-,
vy €Dy, D_ND, = f~Yc) are fulfilled.

The set f~1(co) is the support of a simple continuous curve
¢ : I — D? (see above). For every t € (0,1) a point (¢) is a regular
point of f, therefore through this point passes a U-trajectory and it
is divided by the point ((¢) into two arcs, one of which is contained
in D_, the other belongs to D,. Consequently, in each of the
sets D_ and Dy through the point ((t) passes a U-trajectory,
so we can take advantage of Corollary 1.4.2 and by means of a
straightforward verification we establish validity of the following
claims:

e there exists such a homeomorphism H_ : D_ — Ei that
H_o((t)=(2t—1,0),t €I and

foH Na,y)=(1-y)co+yf(vo) =
(1 —y)(f(v-) + f(vy))

= 5 +yf(v-) =
_ 4y fls)  A-y)fles)
2 2 ’

e there exists a homeomorphism H : Dy — ﬁi which com-
plies with the equalities H; o {(t) = (2t — 1,0), ¢t € I and

foH Nz, y) = (1—y)co+yf(vy) =
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_=yfs) | A4y fs)
2 2 ‘

Let us consider a set D = {(z,y) € D?|y < 0} and a home-
omorphism Inv : 53_ — E2_, Inv(z,y) = (z,—y). A mapping

H_ =InvoH_:D_ — 52, is obviously a homeomorphism and is
compliant with the equalities H_ o ((t) = (2t —1,0), t € I and

o ity = LE W) L (= CNfle) _

A =yflo) | A +y)flus)
N 2 + 2 =

From the above it easily follows that a mapping H : D? — D?,

A (zy), i (s,y)€D_,
HJr(xvy)a if (SC,y)GDJr,

Hf(xvy) = {

is a homeomorphism and satisfies the hypothesis of Corollary. O

Let us summarize claims proved in this subsection.
Taking into account Lemma 1.2.2 we can give the following
definition.

Definition 1.4.1. Let f be a weakly regular function on the disk
D, let v1,...,74 be arcs from Definition 1.2.1. If through every
point of a set T' which is dense in Yo U Y4 passes a U-trajectory,
then the function f is called regular on D.

Theorem 1.4.3. Let f be a regular function on the disk D, let
Y,---,7a be arcs from Definition 1.2.1. Let D' = I? if 75 # @
and 4 # @; D' = D? if % U~y = @; D' = Ei if exactly one from
the sets Yo or Y4 s empty.
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Let ¢ : 0D — 0D’ be a homeomorphism such that ¢(K) = K’,
where

K=f1! (mln(f(z)) U maX(f(Z)>) ’

zeD zeD

K = { y)eD |ye i , ma } )

(z,y) |y e { i (y) (JE)QXD/(Q)}

Then there exists a homeomorphism Hy of D onto D' such
that Hf|g = ¢ and f o Hf_l(ac, y) =ay+b, (x,y) € D' for certain
a,beR, a+#0.

Theorem 1.4.4. Let f and g be regular functions on a closed
2-disk D.

Every homeomorphism g : 0D — 0D of the frontier 0D of D
which complies with the equality g o po = f can be extended to a
homeomorphism ¢ : D — D which satisfies the equality go p = f.

Proof. This statement is a straightforward corollary from Theo-
rem 1.4.3. O

Remark 1.4.1. Everything said here about p-length of a curve and
about Frechet distance between curves remains true for continuous
curves in every separable metric space (see [24]). In particular,
proof of Lemma 1.5.8 is literally transferred to that case.

Remark 1.4.2. In order to prove Theorem 1.4.1 we used tech-
niques analogous to the one of [40].

1.5 Properties of trees embedded into two-
dimensional disk

Let T be a tree with a set of vertices V' and a set of edges E.
Suppose that T is non degenerated ( has at least one edge). Denote
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by Vier a set of all vertices of T such that their degree equals to
1. Let us assume that for a subset V* C V the following condition
holds true

Vier CV™. (1.4)

Let also ¢ : T'— R? is an embedding such that
p(T) S D*, (T)NOD* = p(V*). (1.5)

Lemma 1.5.1. A set R?\ (o(T) U 0D?) has a finite number of
connected components

Uy =R?\ D*Uy,...,Up,

and for everyi € {1,...,m} a set U; is an open disk and is bounded
by a simple closed curve

OU; = Li Up(P(vi,vf),  Li N p(P(vi, v5)) = {p(vi), 0(vy) }

where L; is an arc of OD? such that the vertices ¢(v;) and p(v})
are its endpoints, and p(P(v;,v})) is an image of the unique path
P(v;,v}) in T which connects v; and v.

Proof. We prove lemma by an induction on the number of elements
of the set V*. Denote by 4 a number of elements of a set A .

Let us remark that §V* > 2 since Vie,, € V* and Vi, > 2 for
a non degenerated tree T (it is easily verified by induction on the
number of vertices).

Base of induction. Let §V* = 2. From what was said above it
follows that V* = Vie,r. So, a tree satisfies a condition {Vi., = 2.
For such trees it is easy to prove by induction on the number of
vertices that every vertex of V' \ Vie, has degree 2. In other words
it is adjacent to two edges.
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If a tree is considered as CW-complex (i.e. 0-cells are its ver-
tices and 1-cells are its edges), then a topological space T is home-
omorphic to a segment with a set of the endpoints which coincides
with V* = Vig,.

Let ¢(T) be a cut of a disk D? between ((v1) and p(v), where
{U17U2} = Vier.

Let us fix a homeomorphism

®o: OD* U p(T) — dD* U ([-1,1] x {0}),

such that ®gop(v1) = (—1,0), ®gop(v2) = (1,0), ®g(0D?) = dD?,
Do o p(T) = [-1,1] x {0}.

By Shernflic’s theorem [26,43] we can find a homeomorphism
® : R? — R? which extends ®,. It is obvious that an embedding
®op: T — R? complies with the conditions of lemma. From fact
that ® is homeomorphism it follows that ¢ satisfies conditions of
lemma.

Step of induction. Suppose that for some n > 2 lemma is
proved for all trees with $V* < n and their embeddings into R?
which hold Conditions (1.4) and (1.5).

Let a tree T such that Vi, C V*, fV* = n, and an embedding
¢ : T — R? which satisfy Conditions (1.5) is fixed.

As we noticed above the set V., contains at least two elements
wi,wy € Vier. Let us consider the path P(wi,ws) which con-
nects those vertices. Suppose that it passes through the vertices in

the following order wy = ug, u1,...,Uup_1,ur = wy. Every vertex
ui,...,up—1 has degree at least 2 since it is adjacent to two edges
of P(wl, wg).

There exists a vertex us, s € {1,...,k — 1} such that
(i) a degree of u; equals to 2 and w; ¢ V* for i € {1,...,s—1};

(ii) either a degree of us is greater than 2 or us € V* and a
degree of ug equals to 2.
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Remark that a degree of us; does not equal to 1. Otherwise,
the correlations us = we, T' = P(v1,v2), V* = {wy,wa}, §V* =2
should be satisfied but we assumed that §V* > 3.

Let us consider a path P(wi,us) = P(ug,us). Suppose that it
passes through edges ey, ..., es successively.

We consider a subgraph T of T with the set of vertices and
edges, respectively, as followes

V(T") =V \{uo,...,us—1}, ET)=FE\{e,...,es}.

By construction ug € Vie,(T') and wg is adjacent to e; in T'; every
vertex w;, ¢ € {1,...,s — 1} has degree 2 thus it is adjacent only
to e; and e;41 in T. Therefore a graph T’ is defined correctly.

A graph T’ has no cycles since it is a subgraph of T. Let
us verify that T” is connected. Let v',v” € V(T") and P(v',v")
be a path which connects vertices v" and v” in T. Then a path
P(v',v") does not pass through a vertex wy = wy since ug € Vier
and only one edge e; is adjacent to this vertex. Thuse; ¢ P(v',v").
Similarly, if s > 2 then ey ¢ P(v',v”) since an edge es is adjacent
to a vertex w; which is in addition adjacent only to e; and e; ¢
P(v',v"). Similarly, by induction we prove that e; ¢ P(v',v") for
every i € {1,...,s}. Thus a path P(v/,v”) connects vertices v’
and v” in T". Therefore a graph T” is connected.

We verified that 7" is a tree. Let us define V*(T7") = V*(T) N
V(T"), po = | : T' — R%. By definition of a set V*(T") it is
obvious that a map ¢q satisfies condition (1.5). Also $V*(T") <
§V*(T) since ug € V*(T) \ V*(T"). Thus §V*(T") < n.

Let us check that Vi, (77) C V*(T").

By construction for every vertex v # us of T” its degrees coin-
cide in T and T”. The degree of us in T” is on one less then degree
of ug in T'. Thus Vier(T") C Vier (T) U {us}-

If ug € V¥(T), then Vie,(T') C Vier(T) U VH(T) C V¥(T).
Therefore Vi, (T) CV(T)NV(T") = V*(T").
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Let us ¢ V*(T). By definition the degree of us in T is not
less then 3 and a degree of ug in 7" is not less then 2. Thus
Vier(T") C Vier (T) C V*(T). So, as above, Vi, (T7) C V*(T").

By induction lemma holds true for a tree 7" and an embedding
o : T' — R2.

Denote by Wy = R2\ D2, W1y,..., W, connected components
of a set R?\ (po(T") UOD?).

It is obvious that

P(T) = o(T") U p(P(uo, us)) = ¢o(T") U (P (uo, us)) -

Therefore o(T) U dD? = (po(T") U OD?) U (P (ug, us)). By con-
struction we get that(o(T")U0D?*)Ne(P(ug,us)) = {e(uo), ¢(us)}.

Denote J = ¢(P(ug,us)). The set Jo = J \ {p(uo), p(us)} is a
homeomorphic image of interval thus it is connected. But besides
Jo N (po(T") UOD?) = & thus there exists a component W; which
contains Jy (it is easy to see that j # 0).

By assumption of induction the boundary of disk W is a simple
closed curve OW; = K; U (P (vj,v})) which consists of an arc Kj
of a circle D? with the ends ¢o(v;) and ¢o(v;) and an image of
path P(vj,v}) which connects vertices v;,v; € V*(1") in 7" (this
path also connects vertices v; and v} inT).

The set J is a homeomorphic image of segment and also Jy C
W), plu) € OD? C (R2\ W), plus) € wo(T)) C (R2\ W)).
Therefore J is a cut of disk W; between points ¢(v;) and ¢(v}).
Correlations ¢(us) € p(P(vj,v})), p(uo) € K;\ {p(v;), p(v})} =
OW; \ o(T") hold true since ug ¢ V(T") and ¢(ug) ¢ o(T7).

So, a set W, \ (OW; U (P (ug,us))) has two connected compo-
nents le, Wj2 which are homeomorphic to open disks and bounded
by simple closed curves.

We remark that the arc ¢(P(v;,v)) is not a point, otherwise
the correlations K; = 0D? ¢o(T") N 0D?* = {p(vj) = p(v))},
#V*(T") = t(po(T")NOD?) = 1 should hold true. Thus points ¢(v;)
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and (v;) are different. From the inclusions ¢ (us) € ¢(P(vj,v})),
p(ug) € OW; \ (P (vj,v})) it follows that points ¢ (v;) and ¢(v})
can not be contained in a set OW} N OWjQ = @(P(up, us)) simulta-
neously.

Let ¢(v;) € 3Wj1, p(v;) € (9Wj2. By those correlations the sets
le and I/Vj2 are defined uniquely.

Points ¢(ug), ¢(us) divide the circle onto two arcs Ry, Re with
R; C 8le \ sz, Ry C asz \ le.

Suppose for some edge e € E(T) its image is contained in OWj.
Then the image of e without the ends is connected set and belongs
to OW; \ {¢(uo), ¢(us)} = Ri U Rp. Thus the image of e without
the endpoints belongs to either R; or Rs.

The path which connects vertices v; and v;- in T" passes through
the vertices v; = 0g, 01,...,0; = v; and through the edges
€1,...,€g in this order.

If o(9;) € Ry for some i € {0,...,k}, then p(%;) € R?\ Ry
and (p(é)\ {¢(55), @(:11)}) N (R \ ) # 2 since a point (@)
is a boundary for the set o(&;) \ {©(;),(9;+1)} but R? \ Ry is
an open neighborhood of this point. From what we said it fol-
lows that ©(&;) \ ¢(9;11) € Ry. Therefore ¢(9;11) € Ry = Ry U
{e(uo), p(us)}. Indeed, either (v;4+1) € Ry or ¢(0iy1) = p(us)
(and 0,41 = us) since ug € V(T") by construction.

By assumption of induction ¢(us) € ¢(P(vj,v})) = (o, U))-
Hence ug € {0g,...,0;} and there exists an index ko € {0,...,k}
such that ug = Uy, .

The inductive application of our previous argument leads us to
correlations ¢(P (0o, us)) \ p(us) = @(P(vj,us)) \ ¢(us) € Ry (in
the case when v; = us we get @(P(v],us)) = p(us)).

Similar argument give o(P(us,v})) \ ¢(us) C Ro.

Finally we get 8W1 Ry U (P(ug,us)) = Ry U J, 8Wj2 =
RyUJ; alemSO(P(Uijj)) OW; N(o(P(v), us)) V(P (us, v5))) =
@(P(vj,us)); OWF N(P(vj,v))) = (P (us, v))).
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Therefore o(T) NOW} = (p(T') U J) NOW} = (o(P(vj,v})) U
J) N OW} = o(P(vj,us)) U p(P(uo, us)) = ¢(P(vj,u0)); ¢(T) N
8Wj2 = (P (v}, up))-

It is easy to see that o(v;) # ¢(uo) and p(v;) # ¢(uo) since
vj, v; € V(T') but ug ¢ V(1'). Hence a set o(P(vj,up)) \
{¢(v}), ¢(uo)} is one of two connected components of the set 8Wj1\
{©(v;), p(uo)}. Another connected component of this set is con-
tained in OW; \ ¢(T") = K; C dD? thus it is an arc of circle D>
which connects points ¢(v;) and ¢(ug). Denote it by Kjl

Similarly, (‘3Wj2 = (P (v}, uo))UK]?, where KJ2 is an arc of 9D?
which connects points ¢(v}) and ¢(u).

We proved that a compliment R? \ (¢(T') U dD?) has a finite

number of connected components
Rz \ D2 = W07W15 ceey Wj*l)leijzv‘/I/jJrla sy Wr ;

and the components le and I/Vj2 satisfy the conditions of lemma.
Finally we remark that the correlations OWy N (T) = W N
o(T") = OW, N o(T") hold true for k > 0, k # j thus

Wy = K U po(P(vg,v},)) = Ki U (P (vg, vy,))

and the component Wj, satisfies lemma.
O

Corollary 1.5.1. Let T be a tree with fized subset of vertices V* 2O
Vier and ¢ : T — R? an embedding which satisfies (1.5).

Then the following conditions hold true.

1)In notation of Lemma 1.5.1

Ling(T) = {p(vi),p(v))}, i=1,....,m.

2) If there exists an arc L of circle 9D? with the ends p(uy),
o(uz) such that LN @(T) = {e(u1),p(uz)} for some uy, us € V*,
then there exists k € {1,...,m} such that L U p(P(u1,uz)) = Uy
(then L = Ly, ui = vg, ug = v}).
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Proof. 1) Suppose that an arc L; \ {¢(v;), o(v})} contains a point
o(v) € (T) for some i € {1,...,m}. Thus v € V*. Let e € E(T)
be an edge of graph T which is adjacent to a vertex v and v’ € V
be another end of the edge e.

A set Jop = ¢(e)\{¢(v),p(v)} is connected, ¢(v) is a boundary
point of it, W = R?\ ¢(P(v;,v})) is an open neighborhood of a
point ¢(v). Thus JoNW # & and e ¢ P(v;,v;). Hence JyN
o(P(v;,v})) = @. By the conditions of lemma also Jy N dD? =
. A set p(P(v;,v})) is a cut of closed disk D?. Obviously, by
construction aset @ = U;\ (P (v, v})) = U;U(L\{p(v;), p(v})}) is
a connected component of the compliment D?\ (P (v;,v})) which
contains a point ¢(v). That point is a boundary point of the
connected subset Jy of a space D? \ ¢(P(v;,v})) therefore Jo C Q.

But U; € R2\ ¢(T), L; € 0D? and Jy C ¢(T) \ ¢(V) C
(p(T) \ dD?. Thus JonQ C (Jg N Uz) U (Jo N Li) =J.

The contradiction obtained is a last step of the proof of first
condition of corollary.

2) Support that there exists an arc L of 9D? with the ends in
points p(u1), ¢(ugz) such that LNe(T) = {p(u1), p(uz)} for some
ui, ug € V*.

An arc L bounders to some connected component Uy, k > 1 of
the compliment R? \ (o(T) U dD?). From Lemma 1.5.1 and first
condition of corollary it follows that {u1,us} = {vg, v, }. Thus ver-
tices u1 and uy can be connected by a path P(uy,uz) = P(vg, vj)
which satisfies Lemma 1.5.1. A graph T is a tree thus P(uj,u2) =

P(ul,ug) ZP(Uk,Uk/). D

Let T be a tree with a fixed subset of vertices V* and ¢ : T' —
R? is an embedding which satisfy (1.4) and (1.5).

The pair of vertices vy, vo € V*, v1 # v9 is said to be adjacent
on a circle 9D? if there exists an arc L of this circle with the ends
o(v1) and @(va) such that LN p(T) = {¢(v1), p(v2)} holds true
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for it.
Denote by P a set of all paths in T" which connect adjacent
pairs of vertices.

Corollary 1.5.2. If{V* > 3, then a correspondence

@l{Ul,...,Um}ﬁP,
G(UZ) = P(UZ',U;),

15 a bijective map.

Proof. Tt is sufficient to check an injectivity of the map ©.
Suppose that the following equalities hold true OU; = L; U
o(P(v,v")), 0U; = L;j U @(P(v,v")) for some i, j € {1,...,m},
i # j. Then L; N Lj = {p(v),o(v)}, L; UL; = S' therefore
L;UL; = 9D
But from Corollary 1.5.1 it follows that

@ = (LiUL; \ {¢(v),9()}) Ne(T).

Hence £(0D? N ¢(T)) = $V* < 2 and it contradicts the conditions
of corollary. m

1.6 On relations defined on finite sets

At first we remind that a ternary relation O on the set A is any
subset of the 3" cartesian power A3 : O C A3,

Let A be a set, O a ternary relation on A which is asymmetric
((z,y,2) € O = (z,y,2)€0), transitive (z,y,2) € O, (x,z,u) €
O = (z,y,u € O) and cyclic (z,y,2) € O = (y,z,2) € O. Then
O is called a cyclic order on the set A [27].

A cyclic order O is a complete on a finite set A, §A > 3, if
r,y,2 € A,x # y # z # x = there exists a permutation u, v, w of
sequence (x,y, z) such that (u,v,w) € O.
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Proposition 1.6.1. Suppose there is a complete cyclic order O on
some finite set A, A > 3.
Then for every a € A there exist unique o', a” € A such that

e O(d,a,b) for allbe A\ {a,d'};
e O(a,a”,b) for allbe A\ {a,d"},
and a' # a”.

Proof. Let us fix a € A. By using [27] we can construct a bi-
nary relation p up to the relation O with the help of the following
condition

O(a,a1,a2) < ayipay.

It is easy to verify that the relation p defines a strict linear order
on aset A\ {a}.

The set A\ {a} is finite therefore there exist a minimal element
a’ and maximal element a” with respect to the order p on this
set. It is obvious that they satisfy conditions of proposition by
definition.

Finally, o’ # a” since §(A4 \ {a}) > 2. O

Definition 1.6.1. Suppose there is a complete cyclic order O on
a set A, A > 3. Elements a1, as € A are said to be adjacent with
respect to a cyclic order O if one of the following conditions holds:

° O(al,ag,b) fOT all b e A\ {al,ag};
e O(ag,ay,b) for allbe A\ {a1,as}.

Remark 1.6.1. From Proposition 1.6.1 it follows that every ele-
ment has exactly two adjacent elements on a finite set A with a
complete cyclic order.

Definition 1.6.2. Let A be a finite set. A binary relation p on A
is said to be convenient if
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1) for all a, b € A from apb it follows that a # b;

2) for every a € A there is no more than one a’ € A such that
/

apa’;
3) for every a € A there is no more than one o’ € A such that
a’pa.

We remind that a graph of the relation p on A is a set {(a,b) €
A x Alapb}.

Let p be a convenient relation on a finite set A, p be a minimal
relation of equivalence which contains p. Let us remind that a
graph p consists of

e all pairs (a,b) such that there exist k¥ = k(a,b) € N and a
sequence a = ag, a1, ..., a; = b which comply with one of the
following conditions a;_1pa;, a;pa;_1 for every i € {1,...,k};

e pairs (a,a), a € A.

We distinguished a diagonal A 4 4 since, in general, there could
exist a € A such that neither apb nor bpa holds true for all b € A.

The relation p generates a partition f of A onto classes of equiv-
alence.

Proposition 1.6.2. Let B € § be a class of equivalence of the
relation p. Then there exists no more than one element b € B
which is in the relation p with no element of A.

Proof. We remark that if either apb or bpa and b € B, then ¢ € B
by definition of B.

It is obvious that if 8 = 1 then proposition holds true. Let
tB > 2.

Let ag, a1,...,a; be a fixed sequence of pairwise different el-
ements of B such that the correlation a;_1pa; holds true for any
ie{l,....k}.
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If there exists b € B\ {ao,...,ax}, then there exists V' € B\
{ag, .. .,ax} such that either b’ pay or agpb’. Let us verify it.
By definition of a set B there exists a sequence

b=co,c1,....,cm = ag

such that either ¢;j_1pc; or ¢jpcj—q holds true for all j € {1,...,m}.

From correlations ¢g ¢ {ag,...,ar} and ¢, € {ao,...,ax} it fol-
lows that there is s € {0, ..., m} such that cs_1 & {ag,...,ax} but
¢s € {ag,...,ar}. Thus ¢ = a, for some r € {0,...,k}.

Let cs_1pcs, i.e. cs—1par. Then r = 0. Really, if r > 1,
then a,_1pa,. By construction ¢,_1 # a,_1 therefore a correlation
¢s—1pa, contradicts to condition 3) of Definition 1.6.2.

Similarly, if cspcs—1, then ¢ = ay.

It is easy to see that element b’ = cs_; satisfies conditions of
proposition.

From what we said above it follows that if for some pairwise
different ag,...,a; € B inequality {ao,...,ar} # B and relation
aj—1pai, i € {1,...,k} hold true, then there are pairwise different
ag, - --,ay,, € B such that aj_,pa;, i € {1,...,k+ 1} hold true
for them.

By definition the set B contains two elements o', b € B such
that b’ pb”. So, by a finite number of steps (the set B is finite)
we can index all elements of B in such way that the following
correlations hold

a;—1pa;, 1€ {1,...,n}; (1.6)
{ao,...,an} =B.

Therefore only element a,, € B can satisfy conditions of the propo-
sition. ]

Let p be some relation on a set A.
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Definition 1.6.3. Elements by,...,b, € A, n > 1 are said to
generate p-cycle if a graph of the relation p contains a set

{(bo,b1), .-, (bp—1,bn), (bn,bo)} . (1.7)

Definition 1.6.4. Elements by,...,b, € A, n > 0 to generate
p-chain if for arbitrary a € A the pairs (a,by) and (bn,a) do not
belong to a graph of u and for n > 1 a graph of the relation p
contains a set

{(bo,b1), -, (bp—1,bn)}. (1.8)

Corollary 1.6.1. Let p be a convenient relation, B € f a class
of equivalence of the relation p. Then the elements of B generate
either p-cycle or p-chain. In the first case a graph of the restriction
of p on the set B is of form (1.7) and in the other it has form (1.8).

Proof. Let us order the elements of B in such way that (1.6) holds
true for them.

If there exists a € A such that a,pa, then a € B. Conditions
1) and 3) of Definition 1.6.2 obstruct to hold correlation a;pa; for
i#j7—1,5€{l,...,n}. Therefore a = ap and a,pay.

Similarly, if there exists a € A which apag, then from conditions
1) and 2) of Definition 1.6.2 it follows that a = a, and a,pag.

So, either a correlation a,pag holds true or for every a € A
neither apag nor appa holds true. In the first case the elements
of B generate p-cycle (if appag, then a, # ag and §B > 2 by
definition), in the other case we get p-chain. O

Corollary 1.6.2. Let the elements of B C A generate either p-
cycle or p-chain. Then B is a class of equivalence of the relation
p. If the elements of B C A generate p-chain, then the relation p
generates a full linear order on B.

Proof. Let p be a minimal relation of equivalence which contains p.
By definition the set B belongs to the unique class of equivalence
of the relation p. Denote it by B.
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By definition the set B satisfies (1.6). If there exists b € B \ B,
then, as we verified in the proof of Proposition 1.6.2, there is b/ €
B\ B such that

bpag or anpb . (1.9)

This contradicts to the definition of p-chain. If the elements of B
generate p-cycle, then it follows from the definition of convenient
relation that

anpao , (1.10)

see Corollary 1.6.1. By using conditions 2) and 3) of a convenient
relation from equality b’ ¢ B we can conclude that (1.9) and (1.10)
can not be satisfied simultaneously.

So, a set B is a class of equivalence of the relation p.

If elements of the set B generate a chain, then a graph of a
restriction of the relation p on B has form (1.8), see Corollary 1.6.1.
Therefore p generates a linear order on the set B. O

Definition 1.6.5. Let O be a complete cyclic order on A, A > 3.
O is said to induce a binary relation po on a A according to the

following rule: apob if O(a,b,c) Yc € A\ {a,b}.

From Proposition 1.6.1 it follows that a relation pp is conve-
nient.

Proposition 1.6.3. If O is a complete cyclic order on A, then all
elements of A generate po-cycle.

Proof. Let po be a minimal relation of equivalence which contains
po- From Proposition 1.6.1 and Corollaries 1.6.1 and 1.6.2 it fol-
lows that every class of equivalence of the relation po is po-cycle
and there are no any other pp-cycles.

Let B = {bo, ..., by} be some class of equivalence of the relation
po and the following correlations are satisfied

bopb1, ..., bg—1pby, bypbo .
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Support that B & A. Let us fix a € A\ B. By definition the
following correlations hold true

O(bi—1,bi,a), i€{l,...,k};
O(bk, by, a) .

Thus it follows from definition of cyclic order it follows that

O(aabi—lvbi)v Y,E{l,,k},
O(a, by, bo) -

From definition it also follows that if both O(a,bg,b;—1) and
O(a,b;—1,b;), then O(a, by, b;). Therefore starting from O(a, by, b1)
in the finite number of steps we get O(a, by, by).

Thus O(a, by, bo) and O(a, bo, bi) should be satisfied simulta-
neously but it contradicts to antisymmetry of cyclic order.

Therefore all elements of a set A are equivalent under po and
generate ppo-cycle. O

Definition 1.6.6. Let p be a convenient relation on a finite set A.
We define a ternary relation O, on A with the help of the following
rule. The ordered triple (a1, a2, as3) of A is said to be in the relation
O, if a1 # az # a3z # a1 and there are

_ 12 12 12 _ _ .23 23 _ —
al—ao ,al ,...,am(l)—az—ao ,...,am(z)—ag—

=ag',. ., apm =ar, (L11)

which satisfy the following conditions:

o a’ pal foralln e {l,... m(s)} and (s+1) =r (mod 3);

n

o af" ¢ {ai,az,asz} for all n € {1,...,m(s) — 1} and
(s+1) =7 (mod 3).

Proposition 1.6.4. The relation O, is a cyclic order on A.
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Proof. From definition it is obvious that the relation O, is cyclic.

Let us remark that from definition if O,(a1, a2, as3), then all
elements of a set (1.11) (in particular elements aj, as and ag)
belong to the same class of equivalence of minimal equivalence
relation p which contains p.

We should verify that all elements a5, n € {1,...,m(s)},
(s+ 1) =r (mod 3) are different.

Suppose that it is not true and there are two different sets of
indexes such that a8 = al”, n € {1,...,m(s)}, k € {1,....,m(t)},
(s+1)=7r (mod 3), (t+1) =7 (mod 3).

Let us consider two sequences

_ sr _Sr sr tr _tr tT tT
(bl,...,bi)—(an,anH,...,am(S),...,aO,al,...,ak_l,ak),
N\ tr _tt tT sr ST ST sr
(c1,-or6i) = (@), afly1s -+ gy -5 00,01 ooy apg,a3))

Those two sequences satisfy the following conditions:
o b_1pb forallle{1,...,i};
o ciqpe foralll e {l,...,5};
® bj=rc1 =cj=b;

e there exists @ € {a1, az,as} such that either a € {b1,...,b;}\
{c1,...,¢j} ora € {c1,...,¢j} \ {b1,...,b;} since by defini-
tion every element ai, as, az is contained exactly once in the
sequence (1.11).

Let a ¢ {b1,...,b;}. By definition the elements by,...,b; gen-
erate a cycle therefore the set {b1,...,b;} is a class of equivalence
of the relation p, see Corollary 1.6.2. But it contradicts to the
condition that all elements of the set (1.11) belong to the same
class of equivalence of the relation p.

The case when a@ ¢ {c1,...,c;} can be considered similarly.

Therefore all elements of the set (1.11) are different.
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Let Oy(a1,a2,a3) and O,(as, a2, aq) hold true simultaneously.
Then from definition it follows that there are two sequences ag =

31 31 31 _ _ 331 331 31 _
ao,al,...,am(3)—a1anda1—b0,b1,...,bn(3)—agsuchthat

o al pad! for alli € {1,...,m(3)};

)

o b3 pb3! for all j € {1,...,n(3)};

e ay ¢ {ad!,... ,afnl(:g), b, ..., bfll(g)}.
It is obvious that there is k € {1,...,m(3)} such that a3' ¢
{631,...7132%3)} for i < k but a}!' € {b31,...,b“:’Ll(3)}. Hence a}! =

b}l for some I € {1,...,n(3)} and a}'pb}},. It is clear that all
elements of the following sequence

as = adb,... L b, bR
are different and generate p-cycle. Further by definition as does
not belong to that sequence. Therefore a3 = a3! and as belong to
different classes of equivalence of relation p, see Corollary 1.6.2.

On the other hand elements a1, as and a3 must belong to the
unique class of equivalence p, see above.

This contradiction proves the antisymmetry of the relation O,,.

Let O,(a1,a2,a3) and O,(a1,as, as) for some ay,...,as € A.

We should remark that the elements aq,...,a4 are pairwise
different. Really, by definition a; # a3 and {a1,a3} N {az, a4} =
@. If ag = a4, then from a cyclicity of relation O, it follows
that Op(as,a1,a2) and Op(as,a1,a3) = Op(az,a1,a3). But it is
impossible since a relation O, is antisymmetric.

Let us consider a sequence (1.11). Its elements generate p-cycle.

We will prove that a4 € {a3l, ..., a%(S)il}.
Suppose that a4 € {a%%...,a%’f(l)il}. Then a4 = a}?, k €

{1,...,m(1) — 1}. We consider the sequences

(bi?, .. .,b%(Ql)) = (a1 =ad?,...,a}? = ay);
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(b33, .. .,b?(%)) = (ag = a}?, ... ,a}?f(l) =a23, ... ,afs’@) =as);
(b1, .. .,bf(13)) = (a3 =a',... ,a%(?’) =a).

Join them into a sequence
12 12 23 23 31 31
a1:b0,...,bt(l):(m:bo,...,bt(2):a3:b 7"'7bt(3)'

By the construction all elements of such sequence generate p-cycle
therefore it satisfies the properties which are similar to the condi-
tions of the sequence (1.11). We get O,(a1, a4, a3). Then from a
cyclicity of the relation O, it follows that O,(a4,as,a1). But by
the condition we have O, (a1, a3, as), moreover, we proved that the
relation O, is antisymmetric. Thus the relation O, (a4, a3, a1) does

not hold true and a4 ¢ {ai?,... ,a}qf(l)_l}.
The fact that aq ¢ {a3,. .. vagr?(z)q} can be proved similarly.
Therefore ay € {a3l,... 7“%(3)71} and ay = a3! for some s €

{1,...,m(3) — 1}.
Let us consider the sequences

(ci?,... ,ci%l)) = (a1 = ad?, ... ,a}fm =ay);

(033,...,072_%2)) = (ag = a%?’,...,aif@) =ad,... a3 =ay);
31 31 31 31

(€5 s Cogy) = (aa=ay,....ap5 =a1).

Let us join them into a sequence

ar= e ma =By —a =
By construction this sequence satisfies the conditions of defini-
tion 1.6.6. Therefore the correlation O,(a1, a2, as) holds true and
the relation O, is transitive.

Finally, we can conclude that the relation O, satisfies all con-
ditions of definition of cyclic order. O
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Definition 1.6.7. Let C and D be cyclic orders on sets A and B,
respectively. Let ¢ : A — B be a bijective map.

A map @ is called a monomorphism of cyclic order C into a
cyclic order D if

C(ah az, a3) = D((p(al)a (,0((12), 90((13)) ;

it 4s called an epimorphism C onto D if

D(by,ba,b3) = Cp~ ' (b1), 0" (b2), " (b3)) 5

© is an isomorphism C' onto D if

C(a1,a2,a3) < D(p(a1), p(az), p(as)) .

Remark 1.6.2. [t is clear that

1) if ¢ is a monomorphism of cyclic order C onto D, then ¢~
is an epimorphism of D onto C;

2) an isomorphism of the relations of cyclic order is a map
which s a monomorphism and an epimorphism simultaneously;

3) a relation of isomorphism is a relation of equivalence.

1

Lemma 1.6.1. Let C' and D be complete cyclic orders on the sets
A and B, respectively, p : A — B is a bijective map.

If ¢ s either monomorphism or an epimorphism, then ¢ is an
1somorphism.

Proof. Let ¢ be an epimorphism (in the case when ¢ is a monomor-
phism we consider a map ¢~ 1). Let us check that ¢ is also a
monomorphism.

Let C(a1,az,a3) for some aj, ag, a3 € A. We define b; =
v(a;) € B, i =1,2,3. From definition it follows that a1 # az #
as 7& ai.- Then bl 7é bg 7& b3 # bl.

The cyclic order D is full therefore there is a permutation
o € S(3) such that D(bs(1),bs(2),bs(3))- From an epimorphism
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of ¢ we can conclude that C(a,(1), @0 (2),a(3))- Thus o is even
permutation. Now from antisymmetry an cyclicity of D it follows
that D(by, ba, b3), see [27]. Therefore we get D(p(a1), p(az2), ¢(a3))
and ¢ is a monomorphism. O

Remark 1.6.3. Lemma 1.6.1 holds true for arbitrary sets A and
B, i.e. they can be infinite.

Lemma 1.6.2. Let O is a relation of complete cyclic order on the
finite set A. Then
0O=0

PO

where po is a convenient binary relation generated by O and O,
is a relation of cyclic order generated by the convenient relation

PO

Proof. We should prove that the relation O, is full.

Let by, ba, by be some pairwise different elements of A. From
Proposition 1.6.3 and Corollary 1.6.2 the minimal relation of equiv-
alence po which contains po has the unique class of equivalence
B = A. Thus we can index all elements of A in such way that (1.6)
holds true. From Corollary 1.6.1 we also get a,pag.

It is obvious that {b1,b2,b3} = {ak,,ar,,ar,} for some 0 <
k1 < ko < k3 < n further there is a inversion o € S(3) such that
ag, = by, 1 =1,2,3.

Let us consider the sequences

(6(1)27 s 7613(1)) = (ak17ak1+17 s 7ak2);
(23, ... ,c%f@)) = (Qhy,---,0ky);
(cgl,...,ci’é(S)) = (Akgy .-+, 0n, G0, .-, Ak ) -

We can join them into one

_ 12 12 _ _ .23 23 _ —
ap, = C ,...,Cm(l)—a/kQ = C ,...,Cm(Q)—a/k-s—



1.6. ON RELATIONS DEFINED ON FINITE SETS 69

= ...,cfi(g) = ay, .
By construction this sequence satisfies the conditions of Defini-
tion 1.6.6 thus we get O, (ak,, kg, Gry)- It means that
Oﬂo (bg(l), bg(g), bg(g)) and OPO is full.
Suppose that O, (a1, az, az) holds true for some a1, as, az € A.
From Definition 1.6.6 it follows that there is a sequence

_ 12 12 _
ap = ap ,...,am(l)—GQ,

such that a}?,poal? for all i € {1,...,m(1)}. Therefore from def-
inition of the relation po correlations O(a}?;, a2, a) follow for all
a€ A\{a}?;,al?},i € {1,...,m(1)}. Especially, O(al?,,a}?, a3),
i€ {1,...,m(1)}. From cyclicity of O it follows that the correla-
tions O(ag,ai?;,a?), i € {1,...,m(1)} hold true.

Starting from the correlation O(as,a}?, al?) = O(as,ay,al?),
using the previous correlations and transitivity of O we induc-
tively get that O(as,a1,al?), i € {1,...,m(1)}. In particular,
O(ag,al,a}?f(l)) = O(as,ay,a2). From a cyclicity of O it follows
that O(ay, a9, as).

Therefore an identical map Idg : A — A induces an epimor-
phism of a complete cyclic order O onto a complete cyclic order
Opp- From Lemma 1.6.1 it follows that the map Id 4 is an isomor-

phism of the cyclic orders O and O,,, therefore O = O,,,. O

Lemma 1.6.3. Let p be a convenient relation such that all ele-
ments of a set A, A > 3 generate a cycle.

Suppose that a graph of relation p on A is obtained from a
graph of p by throwing out two pairs (by, b)) and (ba,by) (the cases
when either by = by or by = by are included). Let i be a minimal
relation of equivalence which contains .

Then the relation p is convenient, [i has exactly two classes
of equivalence By and Bo such that the elements of each of them
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generate p-chain and the elements by, by € A belong to the different
classes of equivalence of [i.

Proof. The fact that p is a convenient relation is trivial corollary
from definition.

The relation p does not contain cycles. In fact, if the elements
of some set B C A generate u-cycle, then elements of B generate
p-cycle. From Corollary 1.6.2 and the condition of lemma we get
B = A. Then from definition of a cycle it follows that there is a €
A such that by ua, hence bypa. But bipb] and b # a (by condition
of lemma b; is not in the relation p with b}). It contradicts to the
Condition 2) of definition 1.6.2.

Thus every class of equivalence of the relation ji is a chain, see
Corollary 1.6.1, and it contains exactly one element which is in the
relation p with no element of A.

By condition of lemma the elements of A generate p-cycle.
From Definition 1.6.2 it follows that there is the unique o’ € A
such that apa’ for every a € A. Then aud’, if a ¢ {b1,ba} but by
and by are the unique elements of the set A which are not in the
relation p with any element of A.

now the statement of lemma elementary follows from what we

said before. O

1.7 A local connectivity of two dimensional
disk in boundary points

Definition 1.7.1 (see [26,43]). Let E be a subset of a topological
space S and x is some point of S (x does not necessarily belong to
E). A set E is called a locally connected in a point x if for every
neighborhood U of x there is a neighborhood U' C U of x such that
any two points which belong to U'NE can be joined by a connected
set which belongs to U N E.
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Lemma 1.7.1. Let D? be a closed two dimensional disk, x € 0D?
and W an open neighborhood of point x in a space D?.

If for some connected components W1 and Wy of a set W N
(D?\ 0D?) the following correlation holds true x € W1NWa, then
Wi = Wa.

Proof. Obviously, we can assume that D? is a standard two di-
mensional disk on a plane. Let U be a neighborhood of point x
in R? such that D> N U = W. It is known, see [26,43], that every
Jordan domain on the plane is locally connected in all points of
its boundary. Therefore there exists a neighborhood U’ of x such
that arbitrary two points which belong to U’ N (D? \ dD?) can be
connected by a connected set that is contained in U N (D?\ 9D?).
Therefore all points of the set U’ N (D?\ 9D?) should belong to
the unique connected component of a set W N (D?\ 9D?). O



Chapter 2

Combinatorial invariant of
pseudo-harmonic functions

2.1 The construction and main properties of
invariant

At first we should remind the term of Reeb’s graph. Let M be a
smooth compact manifold. Suppose that f: M — R is a smooth
function with a finite number of critical points. Let us define con-
nected component of level curves of f~1(a), where a € R, as layer.
Then M is the union of all layers of f. Also we can define the
relation of equivalence as the property of points to belong to a
same layer and consider the quotient space by this relation. It is
homeomorphic to a finite graph named Reeb’s graph and let us
denote it by 'k —r(f). Its vertices are components of level curves
such that they contain the critical points.

Let D? be a closed oriented disk and f : D?> — R be a pseu-
doharmonic function. We should remark that for a manifold with
boundary the construction of Reeb’s graph is an open problem
therefore there is a reason to obtain another invariant for such
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functions.
Construction of invariant for pseudoharmonic function na-
med as combinatorial diagram:

1)

We construct Reeb’s graph I'x_ g (f|op2) of the restriction of
f to OD?. It is isomorphic to circle with even number of ver-
tices of degree 2 (vertices are local extrema of the restriction
of f to D?) and fix an orientation on I'_ g(f|gp2) which
is generated by the orientation of D?.

Let a; be the critical values of f and ¢; be the semiregular
values. We add to 'k _r(f|sp2) those connected components
of sets

fHa)U...UfHan) U e)UfHe)U...Uf ),

of level curves that contain critical and boundary critical
points. It is obvious that new vertices are contained in

FK,R(f’aDQ). We set

P(f) =Tk—r(flop2) U F Ha) U J FH(ey),
i i

where f_l(ai) C fYay), f_l(cj) C f71(c;) are those con-
nected components of level sets that contain critical and
boundary critical points.

We put a partial order on vertices of P(f) by using the values
of f: v1 <wvg <= f(x1) < f(x2), where v, vy € P(f), 21,22
are points corresponding to vertices vi,va, respectively. In
case of the same values of function on vertices they will be
non comparable.

This partial order is strict [20] since the relation is antireflexive,
antisymmetric and transitive. P(f) will be called combinatorial
diagram of pseudoharmonic function f.
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By the construction P(f) is a finite partially oriented graph
with a strict partial order on vertices.

1 1
2 2
0 0
1 1 1
2 2 2
1 1
3
1 2
0 4

Figure 2.1: Example of a diagram of some pseudoharmonic func-
tion.

We constructed the combinatorial invariant of f as subset of
D?. We will consider it as the abstract partially oriented graph
with fixed relation of partial order on the set of vertices V(P(f)).

Definition 2.1.1. Two combinatorial diagrams P(f) and P(g)
are isomorphic if there exists an isomorphism ¢ : P(f) — P(g)
between them which preserves a strict partial order given on their

vertices (maps ¢ and ¢! are monotone) and the
vy V(P(9))
ortentation.

We put the natural topology on the diagram P(f). For ex-
ample, it can be introduced by structure of one-dimensional CW-
complex on P(f). All vertices of the graph P(f) can be considered
as 0-dimensional cells, similarly, all edges can be considered as 1-
dimensional cells. P(f) also can be regarded as a subset of R® and
all edges are straight segments.
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Definition 2.1.2. Homeomorphism ¢ : P(f) — P(g) is said to
realize an isomorphism ¢ : P(f) — P(g) of combinatorial diagrams
1 = and from ¢(e) = €' it follows that p(e) =
T2l oy = ooy @47 (e) f w(e)
e for any edge e € E(P(f)).

Remark 2.1.1. It is clear that every isomorphism ¢ of combina-
torial diagrams is realized by some homeomorphism but it is not
uniquely defined: for every edge e € E(P(f)) we can arbitrarily
choose a homeomorphism e : € — ¢(e) such that maps e and ¢
are the same on e NV (P(f)).

We constructed the combinatorial diagram P(f) as a subset of
D? therefore “support” of diagram in D? is correctly defined since
it is the set

Py :FK*R(f’é)DQ)UUfil(ai)UUfil(Cj), (2.1)

(2

where f~1(a;) and f_l(cj) are connected components of level sets
of f which contain the critical and boundary critical points.

Similarly, to the vertices of P(f) corresponds the set Vy which
is the “support” of the set of its vertices in D?. Function f induces a
strict partial order on it using the following correlations 1 < x9 <
f(z1) < f(x2). Denote by M(f) C OD? the set of local extrema of
f on D?. By the construction every point of this set corresponds
to some vertex of P(f), thus M(f) C V. Other vertices of P(f)
are characterized by the property that each of them is a common
endpoint of at least three edges, therefore it has no neighborhood
that is homeomorphic to segment in the space P(f).

Definition 2.1.3. Cr-subgraph of P(f) is a subgraph q(f) such
that:

e q(f) is a simple oriented cycle;
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e arbitrary pair of adjacent vertices v;,vi+1 € q(f) is compara-
ble.

Let ¢ : P(f) — D? be an arbitrary embedding of topological
space P(f) into D? such that ¢(P(f)) = P;. Granting what we
said above it is obvious that an inclusion M (f) C o(V(P(f))) is
equivalent to ¢(V(P(f))) = V.

In what follows unless otherwise stipulated we assume
that for any embedding of P(f) into D? the orientation of
Cr-subgraph coincides with the orientation of 0D?.

Definition 2.1.4. Let ¢ : P(f) — D? be an embedding of topo-
logical space P(f) into D?. It is consistent with f if the following
correlations hold true:

o o(P(f)) =Py;
o M(f) Co(V(P(f));

e a partial order on (V(P(f))) = Vy induced by a partial order
on V(P(f)) with help of ¢ coincides with a partial order
induced on this set from R by f.

It is clear that there exist at least one embedding ¢ : P(f) —
D? which is consistent with f. If ¢ : P(f) — P(f) is an iso-
morphism of P(f) onto itself (for example, identical map) which
can be realized by homeomorphism ¢ : P(f) — P(f), then an
embedding ¢ o ¢ is also consistent with f.

We should remind that vertices v; and vy of some graph G are
adjacent if they are endpoints of the same edge.

Let v be some vertex of the diagram P(f) and {v;}, i = 1,k,
be a set of all adjacent vertices to it. Then there exist points x
and x; of D? that correspond to vertices v and v;. Denote by
X; C D? the set of points which corresponds to edge e(v,v;) (it is
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clear that every X; is homeomorphic to segment). Let us consider
the following cases:

Case 1: x € Int D%, Then f(x) = f(x;) = a, wherei = 1, k and
a is a critical value. Therefore vertices v,v1, v, ..., v, are pairwise
non comparable. Since level set of the critical value a is a finite
tree then all vertices of it are non comparable.

Case 2: x € OD?. In this case the point x is either regular
or local extremum of f|5p2 which is continuous and monotonically
increase (decrease) between adjacent local extrema. Therefore,
among sets X; there exist such that function monotonically in-
creases (decreases) on them. Circle is closed Jordan curve then
there are exactly two such sets X; and X} whose endpoints are
points z; and zj. So, it follows that among all vertices {v;} ad-
jacent to v there exist exactly two vertices v; and v, which are
comparable with a vertex v. For both v; and v there exist ex-
actly two vertices which are comparable to it thus these vertices
generate a cycle (the case of two or more non intersecting cycles is
impossible since a disk has one boundary circle).

It is obvious that v together with both vertices v; and vy, belong
to q(f)—cycle.

The fact that the diagram P(f) is constructed by pseudohar-
monic function implies several characteristics of it.

Main properties of P(f):

C1) there exists the unique Cr-subgraph ¢(f) € P(f);

C2) P(f)\q(f) = U\I/,», U,;NV; = &, where i # j, and every

7
W, is a tree such that for any index ¢ arbitrary two vertices
v/, 0" € U; are non comparable;

C3) there exists an embedding  : P(f) — D? such that
¥(q(f)) = 0D and Y (P(f) \ q(f)) C Int D%
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C4) for every connected component © of D? \ Py the function f
is regular (see [29]) on the set ©.

From what was said above the existence of Cr-subgraph and the
fairness of C'2 follow. From the existence of Cr-subgraph and C?2
it follows that ¢(f) is unique. Condition C'3 follows from fact that
P(f) is a diagram of a function f, defined on D?. Cr-subgraph
q(f) € P(f) is unique thus from the definitions it is easy to see
that for every embedding 1 : P(f) — D? which is consistent with
f the equality ¥ (q(f)) = dD? should hold true.

By the definition of the diagram P(f) any tree ¥; corresponds
to a connected component of some critical or semiregular level set
of f. A number of trees is the same as a number of such components
which contain critical or boundary critical points. Denote by PJE =
Py \ 9D? the union of such components.

Let 1 : P(f) — D? be an embedding which is consistent with
f. If the endpoints v’ and v" of some edge e = e(v',v") of P(f) are
non comparable, then é = e\ {v/,v"} € P(f)\q(f) € U, ¥;. Thus
Y(é) € PpnIntD? C Pf. Then there exists ¢ = c(e) € R such
that ¢(e) C f~'(c). Any connected set 1)(¥;) belongs to some
connected component of Pg. From the facts that a map v is an

embedding and ¥ (q(f)) = dD? follow the equalities

w(U\If) =¢(P(H\a(f)) =
=y(P(f)) \¥(q(f)) = Py \ 0D? = P;.

By the definition the number of connected components of sets
U; ¥; and Py coincides thus any set ¥(¥;) is a connected com-
ponent of P]?.

Let us combine together corollaries of Conditions C'1-C3 which
we obtained above.
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Proposition 2.1.1. Let P(f) be a combinatorial diagram of pseu-
doharmonic function f and ¢ : P(f) — D? be an embedding which
is consistent with f. Then the following conditions hold true:

o ¥(q(f)) = 0D

o for any tree V; the set ¥(V;) is a component of critical or
semiregular level set of f.

Let us prove Condition C'4.

Proposition 2.1.2. Let P(f) be a combinatorial diagram of pseu-
doharmonic function f and v : P(f) — D? be an embedding such
that 1(q(f)) = 0D>.

The set 0% = 0% is an image of a simple cycle Q of P(f) for
any connected component > of D\ ¢¥(P(f)).

Proof. All vertices of ¥; C P(f) which do not belong to Cr-cycle
q(f) correspond to critical points of f for any j, thus they have even
degree no smaller than 2. Therefore the set V). of all vertices of

VU, of degree 1 is contained in ¢(f) and we can apply Lemma 1.5.1
to a map 77/)‘ .
vy

By induction on the number of trees ¥; embedded into disk
from Lemma 1.5.1 it follows that a boundary 9% of ¥ is simple
Jordan curve. Let us prove that its preimage Q = ¢~1(9Y) is a
subgraph of P(f). It suffices to verify the following assertion. Let
e = e(v1,v2) be some edge of P(f) and x € ¢ = e\ {v1,v2} be an
inner point of e. If z € @), then e C Q.

It is obvious that the set @ is a simple closed curve. Therefore
Q \ {2’} is connected for any 2/ € Q. Thus Q \ e # @ (any point
of segment e except its endpoints splits it, see [26]). Suppose that
an edge e is support of simple continuous curve o : I — P(f),
a(0) = vy, a(l) = vy. Therefore x = a(7) for some 7 € (0,1).
We should remark that e is one-dimensional cell of CW-complex
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P(f), thus é = a(I) is an open subset of P(f) (we denoted I =
(0,1)). For any interval I(t1,t3) = (t1,t2), t1,t2 € I, t1 < tg, the
set a(I(t1,12)) is an open subset of P(f). Tt is also obvious that
P(f)\ a([t1,t2]), where t1,t2 € I, t; < ta is open in P(f).

Let us show that at least one of sets «([0,7]), «([r,1]) belong
to Q. Suppose that it does not hold true. So, there exist t; € [0, 7]
and to € [1, 1] such that a(t1), a(t2) ¢ Q. Then the nonempty sets
Qna(l(t;,t2)) 3z and Q \ a([t1, t2]) 2 Q\ e open in subspace Q
of P(f) generate a partition of @, but it is impossible since @ is
connected.

Suppose that «(t) ¢ Q for some ¢t € I. Without loss of gen-
erality we can assume that ¢ < 7. Then a([r,1]) C Q. Let us
fix ¢ € (1,1) and set 2’ = «(t'). The nonempty open in Q sets
Qna(lt,t)) >z and Q\ a([t,¥]) D Q\ e generate in Q the
partition of subset @ \ {2’}, but it is impossible since @ \ {2’} is
connected.

Thus e € @ and @ is a subgraph of P(f). The set @ is home-

omorphic to circle thus it is a simple cycle. O

Lemma 2.1.1. Let P(f) be a diagram constructed at pseudohar-
monic function f and ¢ : P(f) — D? be an embedding that is
consistent with f.

Then for any component © of the complement D?>\ P(f) =
D%\ Py its closure © is homeomorphic to disk and f is reqular on

0.

Proof. Let © be a connected component of D2\ P(f). Let us prove,
at first, that f is weekly regular in ©. From Propositions 2.1.1
and 2.1.2 it follows that a boundary of © is a simple closed curve.
Thus O is a closed disk and

90 =8N P; = (Ony(q(f)) U (@rw(Uqui)) — Ty Ul UTY,
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where I'r = © N (U, ¥i); Ty = © N M(f) is a set of points of
d0D? N 0O which correspond to vertices of P(f) of ¢(f)\U; ¥i; Tk
are the open arcs of 9D? N @O which correspond to the edges of
the cycle g(f) without endpoints. It is obvious that the sets I'y,
' and I'7 are pairwise disjoint.

The set I'y, consists of the isolated points of level sets of f.
Each of them is a local extremum of f in D?. The function f is
locally constant on I'r therefore any connected component K of
such set belongs to d)(Ul \Ifz) and there exists cx € R such that
K € f~!(ck). Let I'x be a connected component of f~1(cx) N O
containing K. Then I'y € © N 1/J(UZ \IJZ) = I'p. Consequently
'y =K.

From the definition it follows that all points of I'p are regular
boundary points of f in D?. It is easy to see that sufficiently small
canonical neighborhood of any point of I'g belongs to © therefore
all points of I'g are regular boundary points of f in ©.

By the definition the set I'p has a finite number of connected
components (their number is no more than a number of the edges
of the cycle ¢(f)) therefore there exists a finite collection of points
21,..., %, € 0O which divide the circle &0 into arcs vi,...,Yon
such that I'g = UZ:l Yok—1 (some arcs with even indices can de-
generate into points).

It is clear that 90\ Up_; Y2k—1 = Lli—1 72 = T'v U7, The sets
I'y and I'p are closed and disjoint thus any arc yo, k € {1,...,n},
belongs to either I'yy or I'7.

From the preceding it follows that any set vor, k € {1,...,n},
is a connected component of some level set of f on ©. Therefore
the collection of points 21, ..., z9, satisfies to Definition 1.2.1 and
f is weakly regular on ©.

From Lemma 1.2.2 it follows that n = N(f}@) = 2. If Aop #

@, k € {1,2}, then 9 € I'r (the set I'y is discrete therefore
vor N Ty = &, see above) and any point z € 9 either belongs to
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Int D? or is boundary critical point of f.

If z € 49, N Int D?, then there exist an open neighborhood W,
of z in D? and a homeomorphism ®, : W, — Int D? such that
®,(2) =0 and f o ®; (w) = Rew™ + f(2) for some m > 2. The
set ®,(f~(f(2))) divides Int D? onto 2m open sectors such that
each of them (for sufficiently small neighborhood W) belongs to
D?\ P(f). Thus for at least one of them its image under the action
of ®.1 belongs to ©. Tt is obvious that for every such sector there
exists U-trajectory of f which passes through the point z and is
contained in the closure of the image of sector under the action
of ®;!. Taking that into account some U-trajectory in © passes
through z.

The number of the boundary critical points of f on D? is finite
therefore I' = So;,NInt D? is a dense subset of an arc Yo, k € {1,2},
and function f is regular on ©. O

Lemma 2.1.2. Let P(f) be a combinatorial diagram of pseudo-
harmonic function; V1, 9 : P(f) — D? be embeddings such that
Yi(a(f)) = 8D2; i=1,2.

If an image 11 (Q) of a simple cycle Q C P(f) is a boundary of
some component of the complement D?\ 11 (P(f)), then an image
¥2(Q) is a boundary of some component of the complement D? \

P2(P(f))-

Proof. Let us fix an embedding ¢ : P(f) — D? consistent with f.
Let ¢ : P(f) — D? be an embedding such that ¥ (q(f)) = 0D?.
It is obvious that lemma follows from the following statement: an
image ¥(Q) of a simple cycle @ C P(f) is a boundary of some
component of the complement D%\ ¥(P(f)) iff a curve p(Q) is a
boundary of one of components of D? \ Py = D?\ o(P(f)). Let
us prove this statement.

Suppose that an image ¢(Q) of the cycle @ bounds one of
the components © of the set D? \ P;. From Lemma 2.1.1 it
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follows that f is regular on disk ©, therefore there exist points
21,...,24 € 00 = p(Q) which divide a curve ¢(Q) into arcs
1, .- ,v4 satisfying the following conditions:

® Y1 # D, 73 # &, and the set 1 U3 is the set of boundary
regular points of f on O;

e v and 74 are the components of level sets of f on ©.

From these conditions it follows that (see a proof of Lemma 2.1.1)
wUn = 000 (pV(P() Ue(Jw)) 2
> 90N go(U \11) — 00N (U go(\I’Z-)) . (22)

Suppose that y9 C f71(c), 74 € f1(") for &, " € R. As
41 # @ and all points of this set are regular boundary points of
f on © the following statement holds true: z; # 23 (since §; =
71 \ {21, 22}) and f is strictly monotone on ;. Thus ¢’ = f(z1) #
f(22) = ¢ and the sets 72 and 74 belong to different level sets of
f

Let us set w; = oo H(z), vi = Yo L(y), i € {1,...,4}.
The curve (@) bounds an open domain . From (2.2) it follows
that vo Uy 20X NY(U; V).

Let us assume that a curve ¢(Q) C ¢ (P(f)) is not a boundary
of connected component of D?\¢(P(f)). Therefore SNy (P(f)) #
. We fix z € XN (P(f)). Tt is obvious that ¥ C Int D?, therefore
z=¢Yz2) € P(f)\ q(f) € U;¥; and z € 9(¥;) for some j.
All vertices of the tree W; which do not belong to Cr-cycle g(f)
correspond to the critical points of f thus they have even degree
no less than 2. So, the set V. of all vertices of degree one of tree
VU, is contained in ¢(f). It is easy to see that this set has at least
two elements.
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By easy check we can see that for any point u of a subspace ¥;
of the space P(f) there exist v/,, v// € Vi, and path P(v/,,v") C ¥,
which connects v}, with v// and passes through w. Let us fix for a
point = 1~ (2) vertices v, v/ € V7, and a path P(v},v”) C ¥,
which connects them and passes through a point x. We also fix
a simple continuous curve « : I — P(f) whose support is a path
P(v),,v}). Suppose that «(0) = v}, a(l) = v}, a(r) = .

It is known that ¥(V..) C ¥(q(f)) = 0D?, but z = ¢(x) €
¥ C Int D?. Therefore 7 € (0,1). Furthermore v (v%,), ¥ (v!) ¢ 3,
so that each of the sets ¥o«([0, 7]) and Yoa([r, 1]) should intersect

P(Q) = 9%. Suppose that

t'" = inf{t €[0,7]|voa(ftT]) € X},
t" = sup{t €[r,1]|¢oa(lrt]) € X}.

Then 7 € (#,t") C (o) "1(E) but Yo a(t'), Yo a(t”) € ¥(Q) =
0%, Tt is clear that for every e = e(w',w”) € P(v.,v”) there
exist t/,t" € I, ¢ < t" such that w' = a(t’), w” = «a(t") and
e = a([t',t"]). So, there exist numbers tg =0 < t1 < --- <t = 1,
vertices vg = v}, v1,...,vx = v, and the edges e1,..., ek of the
tree \Ifj such that v; = Oé(ti), 1 € {0, .. .,,IC}, and e; = a([ti_l,ti]),
ie{l,....k}.

From the choice of the numbers ¢’ and " it follows that only
the points «(t') and «(t”) belong to the intersection of the set
a([t',t"]) and the subgraph Q. Thus a(t') = v, and a(t") = v for
somer,s € {0,...,k}, r <s. Hence the path P(v,,vs) = a([t',t"])
connects the vertices v, # v, of the cycle Q) and intersects () along
the set {v,,vs}.

We know already that ¥ (v,), ¥(vs) € vaUvy. Observe that the
points ¥ (v,) and ¥ (vs) can not belong to the different arcs s, vy.
Really from Proposition 2.1.1 it follows that there is ¢ € R such
that o(¥;) C f~1(c), therefore f o (v,) = f o p(vs) = c. On the
other hand, as we checked above, the sets vo = ¢ 0 )~ (1n) and
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v = @ o~ (vg) belong to the different level sets of f.

Without loss of generality, suppose that ¥ (v;), ¥(vs) € vo. The
set vy is connected, moreover vy C ¥ (W;), va N Y(¥;) = @ and
vaUvg 2 (Q)Nep(lU; ¥;). Therefore the connected set ¢~ (1g) =
QNY; is a subgraph of P(f). Hence there exists the path P (v, v,)
connecting the vertices v, and vy in Q@ N ¥;.

From the construction we have P(v,,vs) U P(v,,vs) C VU, and
P(vp,vg) # P(vr, vs). Since VU; is a tree then the vertices v, and v,
can be connected by a unique path in ¥;. So, we obtained the con-
tradiction which proves that ¥(P(f)) N ¥ = @. Considering that
0¥ =9(Q) CyY(P(f)) it follows that ¥ is a connected component
of the set D? \ (P(f)).

Suppose now that for some simple cycle Q" C P(f) the curve
¥ (Q’) bounds a connected component ' of the set D? \ 1(P(f)),
but the curve ¢(Q’) is not a boundary of the connected component
of the set D?\ o(P(f)) = D*\ Py.

Let us prove that in this case Q' C |J, ¥;.

If it does not hold true, then there exists an edge eg C Q' N
q(f). Evidently, there exists a connected component O of the set
D%\ p(P(f)) whose boundary contains the set ¢(eg). Suppose
that Q = ¢~ 1(90). From Propositions 2.1.1 and 2.1.2 it follows
that @ is a simple cycle. As we proved above the set ¥(Q) is a
boundary of some connected component ¥ of the set D2\ ¢)(P(f)).
Obviously, eg CQ N Q.

Let x be an inner point of an edge ey, z = ¢(z). By the
conditions of proposition we have z € ¥(q(f)) = dD?. Tt is easy
to see that for sufficiently small neighborhood W of the point z
in D? which is homeomorphic to half-disk the set W \ ¢ (P(f)) =
W\ (ep) is connected. Therefore W\ (P(f)) C ¥NY' # &. From
Y NoY CEny(P(f)) = & it follows that ¥ C ¥, By a parallel
argument X' C D2\ ¢(P(f)), thus ¥’ NoX C X' Ny(P(f)) = @
and Y C ¥. Hence ¥ = %, Q' = @ and the curve ¢(Q') bounds a
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connected component of the set D?\ Py, but it contradicts to the
choice of the cycle Q. Therefore Q' C |J; ¥;.

The set Q' is connected thus there is j such that Q' C ¥;. But
V¥ is tree and no one cycle is contained in it. This contradiction
is a final step of proof. O

Corollary 2.1.1. With the conditions of Lemma 2.1.2 there exists
a homeomorphism ® : D? — D? such that ® o 1 = 5.

Proof. Let ¥1,...,%, be the connected components of the set
D%\ 1 (P(f)) and Q1,...,Qx be the cycles of the graph P(f)
such that ¥1(Q;) = 0%;, i € {1,...,k}, see Proposition 2.1.2. It
is clear that P(f) = Ule Q.

By Lemma 2.1.2; every set 12(Q;) is a boundary of some con-
nected component X of D?\ 19(P(f)). By using Lemma 2.1.2
once again it is easy to see that D? \ 1o(P(f)) = Ule Y. By
Schoenflies’s theorem, for every i € {1,...,k}, the homeomor-
phism )9 o ¢f1 : 1(Q;) — 12(Q;) can be extended to a

¥1(Q4)
homeomorphism of disks ®; : ¥; — f;, see [26]. It is easy to see
that the map ® : D? — D?,

P(z) = ®i(z), forzeyy,

is well defined and maps D? onto itself bijectively. A finite family
of the closed sets {3;} generates the fundamental cover of D? and
on each of them @ is continuous. Hence ® is continuous on D?,
see [9]. It is known that a continuous bijective map of compactum
to a Hausdorff space is a homeomorphism. O
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2.2 The conditions of topological
equivalence

Let f : D> — R be a pseudoharmonic function and a1 < --- <
an be all its critical and semiregular values. Let us consider a
homeomorphism hy : [a1,an] — [1, N] such that h¢(a;) = j for
all j € {1,...,N}. It is easy to see that a continuous function
f = hy o f is pseudoharmonic, set of its critical and semiregular

values is {1,...,N}, and P(f) = P(f). Function f is called a
standardization of f.

Theorem 2.2.1. Two pseudoharmonic functions f and g are topo-
logically equivalent iff there exists an isomorphism of combinatorial
diagrams ¢ : P(f) — P(g) which preserves a strict partial order
defined on them and the orientation.

Proof. Necessity. Suppose that two pseudoharmonic functions f :
D? - R and g: D? — R are topologically equivalent. Then there
exist homeomorphisms H : D> — D? and h : R — R such that
f=h"1o goH. Also to f and g correspond their combinato-
rial diagrams P(f) and P(g) with the strict partial order and the
orientation which conform to f and g. Let %1 and 9 be embed-
dings of P(f) and P(g) into D? which are consistent with f and g,
respectively (recall that the partial orientations on Cr-subgraphs
of P(f) and P(g) are the same as the orientation of dD?). Evi-
dently, the homeomorphism H maps the regular points of f onto
the regular points of g and the critical points of f onto the critical
points of g, respectively. From ho f = g o H and bijectivity of
h it follows that the homeomorphism H maps the regular, critical
and semiregular levels of f onto regular, critical and semiregular
levels of g, respectively. Thus H o ¢ (P(f)) = ¥2(P(g)) and the
bijective map ¢ = ¢2—1 o Ho1n : P(f) — P(g) is defined. So, we
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have the following commutative diagram:

P(f) LDQ #R

0| il [
P(g) — D? - R

It is easy to see that ¢ defines an isomorphism of graphs. Let
us prove that the maps ¢ and ¢! are monotone. We should
remind that only the preserving orientation homeomorphisms R
are congidered thus the map h : R — R preserves an order of
points of R. Let v; and va be two vertices of the diagram P(f).
By the definition of the diagram P(f) an inequality v; < vy is
equivalent to f o 11(v1) < f oy(ve), so, that is also equivalent
to ho fot(v1) < ho foti(vy). This inequality is equivalent to
gova0p(v1) < gohrop(va) since ho forpy = goHorpy = gotpgop. By
the definition of the relation of order on P(g), the last inequality
is equivalent to ¢(v1) < @(v2). So, the inequalities v; < vy and
©(v1) < p(v2) are equivalent. Finally, we remind that ¢ is bijective
by the construction thus ¢ and ¢~! are monotone. From what
we said it follows that ¢ : P(f) — P(g) is an isomorphism of
diagrams.

Sufficiency. Suppose that f,g : D> — R are pseudoharmonic
functions and P(f), P(g) are their diagrams such that there exists
an isomorphism ¢ : P(f) — P(g) preserving a strict partial order
on the set of vertices and the partial orientations on their Cr—
subgraphs.

At first, we want to replace the functions f and g on the nor-
malized pseudoharmonic functions f and g with the same combi-
natorial diagrams as f and g.

Let a1 < --- < ay be the critical and the semiregular values of
fand by < --- < by be critical and semiregular values of g. We fix
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homeomorphisms Ay : [a1,an] — [1,N] and hg : [by,byr] — [1, M]
such that h¢(a;) = i and hg(b;) = j for all i € {1,...,N} and
j € {l,...,M}. Obviously, the maps hy and h, are orientation
preserving. Required normalized pseudoharmonic functions have
the following forms f= hyofand g=hgog.

Let us fix an embedding v : P(f) — D? which is consistent
with f and an embedding v, : P(g) — D? which is consistent
with g (we should remark that the embeddings ¢y and 14 are also
consistent with f and g, respectively).

Let us prove that for any vertex v of P(f) the following condi-
tion holds true

foy(v) =gotgop(v). (2.3)
We remark that

fowf(V(P(f))) = {ah'"ﬂaN}?
QO¢Q(V(P(9))) = {blv"'7bM}'

Hence

fovy(V(P(f)) = {L...,N},
goy(V(P(9) = {1,....M}.

Fix the sequence of vertices u1,...,us € V(P(f)) such that fo
Yr(ur) =1,..., fots(us) = s = forhy(v). Then ug < -+ < ug
in P(f) hence ¢(u1) < -+ < ¢(us) in P(g) and g o g(ur) o ¢ <
c- < gotpgop(us). Thus j < gopgod(uj), j € {1,...,s}. Hence
fovp(v) = forhr(us) = s < gohgod(us) = gorhyod(v). By
replacing f at g, we have fowf(v) > gogop(v). So, (2.3) holds
true. From (2.3) it follows that M = N and f(D?) = §(D?) =
[1, N].

Let us construct a homeomorphism ¢ : P(f) — P(g) such that
it realizes an isomorphism ¢ and satisfies the following relation on
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the space P(f)

fovr=gogop. (2.4)
By the definition we have ¢(v) = ¢(v), v € V(P(f)), on the set of
vertices.

Suppose that an edge e = e(v',v") € E(P(f)) belongs to a
subgraph |J; ;(f) = P(f) \ ¢(f). The set e is connected and for);
is locally constant on |J; ¥;(f), therefore 1¢(e) C f1(c) for some
¢ € R. In particular, foq/;f(v’) = fozpf(v”) = c and vertices v' and
v” are non comparable in P(f). So, the vertices ¢(v') and ¢(v")
are non comparable in P(g) and ¢(e) C U; ¥;(9) = P(9) \ ¢(9)-
Hence v, o ¢(e) C §G1(c/) for some ¢ € R, in particular, § o
o) = goyog() = . But from (2.3) it follows that
gorop() = fouv) = ¢, therefore e C (f o py) (c) and
p(e) C (§othy)~te). Fix a homeomorphism ¢, : e — ¢(e) such
that p(v) = ¢(v') and @(v”) = ¢(v”). Obviously, f o s(z) =
Gotgope(x)=rc,z €e.

Suppose that an edge e = e(v',v") € E(P(f)) belongs to Cr-
subgraph ¢(f). Then every point of a set ¥¢(e) \ {5 (v'), ¥r(v")}
is a regular boundary point of f , hence f is strictly monotone on
the arc ¢f(e) and maps it homeomorphically on [¢, ¢”], where

¢ =min(forp;(v'), forpy(v”")), ¢ =max(fop(v'), forpp(v”)).

Since ¢ is an isomorphism of the combinatorial diagrams then from
C1 it follows that ¢(e) € g(g). Thus g maps the set ¥4(¢(e)) in R
homeomorphically. From (2.3) it follows that goiyy(¢(e)) = [¢, "]
Suppose that
—1 N

ce= (000, ) ofousie— o).
o(e)
It is easy to see that this map is a homeomorphism and satisfies

the following relation fof(x) = §o g0 @e(z), x € €.
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Let us define a map ¢ : P(f) — P(g) as
o(z) = pe(x), forzxece.

By the construction ¢.(v) = ¢(v) for v € e NV (P(f)) therefore
e (1) = @er () for every pair of edges €’,¢” € E(P(f)) and = €
e ne’ C V(P(f)). So, the map ¢ is defined correctly. It is
easy to see that ¢ satisfies (2.4). The collection of edges {e €
E(P(f))} generate a finite closed cover of a space P(f) thus it
is fundamental. Hence ¢ is continuous since each of maps ¢, is
continuous by definition, where e € E(P(f)), see [9]. It is easy
to see that ¢ is a bijective map and the spaces P(f) and P(g)
are compact. Therefore ¢ maps P(f) on P(g) homeomorphically.
Moreover, since ¢ preserves orientation of ¢(f), then an orientation
on ¢(g) = ¢(q(f)) induced by ¢ coincides with the orientation of

q(g) in P(g).
We set

Hozwgogpoqb;l :Pr— P,
Py
By the construction Hy maps the set Py = 9¢(P(f)) on Py =
1¢(P(g)) homeomorphically. Moreover, from (2.4) it follows that

GoHy=f. (2.5)

As orientations induced on dD? = £(q(f)) = ¥4(q(g)) by ¥¢
and v, from ¢(f) and ¢(g) respectively coincide with the positive
orientation of D? by definition, then Hj preserves the orientation
of D2,

Our aim is to extend Hy to a homeomorphism H : D? — D?
such that go H = f

Let © be one of connected components of D?\ P(f). From
Propositions 2.1.1 and 2.1.2 it follows that there exists a simple
cycle @ C P(f) such that ¢(Q) = 00. Evidently, ¢(q(f)) =
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e(a(f)) = alg). Thus 90 (q(f)) = ¥4(a(g)) = 0D? and from
Lemma 2.1.2 it follows that a set 14 0 ¢(Q) is a boundary of some

connected component ¥ of D?\ P,.

Denote by Rp:(f) a set of all regular boundary points of f. It
is easy to see that, on one hand, Rr.(f) = ¥r(q(f) \ V(P(f))),
on the other hand the set W; of all regular boundary points of
f‘@ coincides with Rp(f) N© = Rp(f) N 0O = Ree(f) N Pr(Q).
Therefore Wy is an image of a set @ N (¢(f) \ V(P(f)))-

Let Rp:(g) be a set of regular boundary points of §g. By analogy,
we can conclude that the set W, of regular boundary points of
g,i is an image of a set ©(Q) N (q(g) \ V(P(g))). But a map ¢ is
bijective and, also, it is known that ¢(g) = ¢(¢(f)) and V(P(g)) =
@(V(P(f)))- Therefore o(Q) N (q(9) \ V(P(g9))) = »(Q N (q(f) \
V(P(f)))) and Wy = tpg 0 p o 7 H(Wy) = Ho(Wy).

From Lemma 2.1.1 it follows that the function f is regular on
the set ©. Let 2q,...,24 and 71, ...,74 be the points and the arcs,
respectively, from Definition 1.2.1. Proposition 1.2.3 guarantees
that Wy = 41 U3 holds true. We set K; =y Uy, = 00 \ Wy.

Similarly, the function § is regular on the set 3. Let wy, ..., wy
and vy,...,v4 be the points and the arcs, respectively, from Defi-
nition 1.2.1. Then W, = U3, We set Ky = 1o Uvy = 0¥ \ Wy

We already verified that W, = Ho(Wy). The map Hy is bi-
jective, thus Ky = Ho(Ky). Hence for the functions f‘@ and g‘i

Theorem 1.4.3 is satisfied with the same set D' € {I2,ﬁi,D2}
and its subset

K'={(z,y) € D'|y € {y1,y2}} ;
y1 = min{y | (z,y) € D'},
y2 = max{y | (z,y) € D'}.

Fix a homeomorphism xf : 00 — 9D’ such that x;(Ky) = K'.
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We set
Xg:XfO¢f0¢_10¢9_1=XfOHO_1:82—>8D/.

The map x4 is a composition of homeomorphisms therefore x, is a
homeomorphism. Moreover, x4(K,) = xro0 Hy '(Ky) = x;(K;) =
K/
From Theorem 1.4.3 it follows that there exist numbers ay, by,
ag, by € R and homeomorphisms F : © — D" and Gg : ¥ — D’
such that FQ‘ —Xf,GQ| = Xg4, and foF Yz,y) = ayy+by,
K K

go Gél(x,y) =agy + by, (z,y) € D'. We set

Ky ={(z,y) e D' |y = w1},
Ky ={(z,y) € D' |y = y2} .

Due to the choice of D’ the sets K1 and K>, are connected. Hence
Fél(Ki), 1 =1,2, are also connected. From

Fél(Kl) (Kl)CKfC'Lﬂf UU\IJ

it follows that there exists ¢; € R such that F_ (K1) € f e

(we remind that f is locally constant on the set wf(V( (f)
U; ¥i(f))). On the other hand, GQ (K1) = x5 (K1) = (x

HyY)~Y(K71), therefore § o Gél(Kl) =go HO o Xf YKy = fo
X7 (K1) = f o Fy (K1) = 1 since (2.5) and G,' (K1) € 57 (c1).
Similarly, there exists c; € R such that Fél(Kg) C fYep) and
Gél(Kg) C g '(c2). Hence for any (z1,1) € K1 and (z2,2) € Ko
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the following conditions hold true

foFg (e, ) = apy + by =1,

ng Go'(1,51) = agyr + by = 1, (2:6)
foFy (xa,y2) = apys + by = ca,

goGy Yo, 10) = 2+bg—62

It is easy to see that a determinant of this system of linear equa-
tions with variables af, by, a, and b, equals to (y2 — y1)%. By the
construction y; # y2 thus (y2 — y1)? # 0 and the system (2.6) has
the unique solution which can be easily calculated:

CcCo — C C — C
2 1 bf:bg: 1Y2 291'

a :a fry N
/ g Y2 — Y1 Y2 — Y1

So, on the set D’ the following equality holds true
foFyl=goGy. (2.7)
It is clear that Gél o Fp(00) = 0X. We remind that
GoloF, =x;'ox = Hy| .
Q °*el K, 1| Ky ’Kf

Since Gél o Fo(Ky) = Ho(Ky) = K, then a homeomorphism
GéloFQ satisfies to relations GéloFQ(Wf) = GéloFQ(a@\Kf) =
0¥\ Ky =W,.

As we know, the set Wy has two connected components 1
and 43. Under the action of the homeomorphism Hy they have
to map on the connected components 77 and 3 of the set W,.
We cyclically change a numeration of the points wi,...,ws and
the arcs vq,...,v4 so that Ho(Yor—1) = vok—1, £ = 1,2. The
homeomorphism Gc_gl o Fg also has to map the sets 7 and 73 on
the connected components of the set W.
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Let us prove that under the condition 42 U~y # @ the relations
hold true Gél o Fo(Yok-1) = Par_1, k = 1,2. We remark that
either G,' o Fp(§1) = i1 or Gg' o F($1) = i3 holds true.

It is clear that an arc yo5_1 is a closure of a arc 49,1 in D?
(by definition qop_1 # @), k = 1,2; similarly, vop_1 = Dop_1.
Thus if Gél o Fo(vak—1) # voj—1 for some k,j € {1,2}, then
Gc}l o Fo(Yor—1) # 2j-1-

Without loss of generality, suppose that Y9 # @. Then zo €
v\ 73 and Ho(z2) € v1 \ v3. But 20 € 7o C Ky and Hy(z2) =
Gél o Fp(#2). Thus Gél o Fo(v1) # vs3, hence Gél o Fo(y) =1t
and G, o F(¥3) = is.

Suppose now that 79 U 44 = @. Then both sets 72 and 7y
are one-point and D’ = D?. Consider an involution Inv : D? —
D% Inv(z,y) = (—x,y), (x,y) € D?. Obviously, it changes the
connected components of 0D\ K" = Fo(Wy). Moreover, Inv| =
Idsince K’ = {(0,—-1),(0,1)}. If G5! o Fy($1) = v3, then the map
G can be replaced by InvoGg. It is easy to see that the following
conditions hold true

« InvoGal, =X, ;

e go(InvoGo) H(z,y) = §o Gy (—z,y) = 0 Gyl (x,y) =
agy + by;

° (ITLU o GQ)fl o FQ(’Oyl) = Wg \ U3 =11.

SO; we proved that the homeomorphisms Fp : © — D’ and
G : ¥ — D’ satisty conditions

° foFélzgonl;

71 _ .
° GQ OFQ‘Kf = HO‘Kf7
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o Gél o FQ(%/Qkfl) = ﬁ2k717 k= 1,2.
We set Hp = Gél o Fp: © — . Let us verify that
H = H .
Q’a@ O‘B@

It is sufficient to prove that Hg(z) = Ho(z) for all z € Wy =
00\ Ky C 71 U~s. As we know, the set 4; consists of the regular
boundary points of the function f , therefore f is strictly monotone
on the arc 41 and maps it on f(y1) C R homeomorphically ( since
~1 is the compactum and the space R is Hausdorff). Similarly, a
map g‘ . v1 — g(r1) C R is a homeomorphism onto its image.

As a consequence of v1 C Py, v1 C P, and from (2.5) it follows
that f(y1) = § o Ho(y1) = §(v1). Thus the following map is well
defined

§_10f| i o
7

By using (2.5) again we have H0| =g lo f| . On the other
s Y1

hand, from (2.7) it follows that f = goGéloFQ = goHg, therefore
A1 A
g Of‘fyl Q"Yl enee 0"}’1 Q"Yl
By analogy we prove that Ho‘ = HQ| . So, we constructed
¥3 Y3

the homeomorphism Hg : © — ¥ such that

A

f=goHgq

and HQ’ = HO’ .
00 00
Let us construct a homeomorphism H : D? — D? such that
f = go H. For every connected component © of D?\ Py its
boundary 00O is an image of a simple cycle Q(©), see Propositions
2.1.1 and 2.1.2. For every © we fix the homeomorphism Hgg)
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such that f = go Hgee) and Hye = H0|8®. We define H by

) oo
the following relations

H(Z):HQ(@), fOI‘ZG@.

If 2 € © N0, then z € Py and Hye/)(2) = Ho(z) = Hger)(2).
So, the map H is correctly defined. By Lemma 2.1.2 there exists a
bijective correspondence between the connected components of the
sets D?\ Py and D?\ P,. Thus H(®')N H(O") = & for © # 0"
and (Jg H(©) = D?. Hence the map H is bijective.

Evidently, by the construction we have

f=goH.
The closures of the connected components of D? \ Pf generate a
finite closed cover of disk D2. Tt is known [9] that this cover is
fundamental. Therefore the map H is continuous on D? since by
construction it is continuous on each element of its cover.

It is known that a continuous bijective map of compactum in
Hausdorff’s space is a homeomorphism. So, H : D?> — D? is a
homeomorphism.

Now recall that map Hy |sp2= H |gp2 preserves the orienta-
tion. Consequently, H preserves the orientation on D?.

We remind that f = hyo f and g = hy o g for some home-
omorphisms hy : f(D?) = [a1,an] — [1,N] and hy : g(D?) =
[b1,bn] — [1, N] which preserve orientation. It is obvious that the
map ho = hy* o hy : f(D?*) — g(D?) is a homeomorphism of the
segment f(D?) on the segment g(D?) which preserves the orienta-
tion. Let us fix a homeomorphism A : R — R, which preserves the
orientation and satisfies h‘ o2 = hg. It is easy to see that

hof:hg_lohfof:hg_lof:hg_logoH:goH,

so, the functions f and g are topologically equivalent. O
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On Fig. 2.2 the diagrams of two pseudoharmonic functions
which have two local minima, two local maxima on dD? and one
boundary critical point are represented. But, these two functions
are not topologically equivalent.

1 0 1 1 0 1
2 2 2 2
1 2 1 2
1 1 1 1
2 0 2 2 0 2

Figure 2.2: The diagrams of topologically non equivalent pseudo-
harmonic functions.



Chapter 3

Criterion of a D-planarity
of a tree

Let T be a tree, V a set of its vertices, Vie a set of its terminal
vertices and V* C V a subset of T such that Vi, C V*. We assume
that if ¥/* > 3 then there is some cyclic order C defined on V*.
Let
D? = {(z,y) e R*|2® +y* <1}

be a closed oriented 2—dimensional disk.

Definition 3.1.1. A tree T is called D-planar if there exists an
embedding o : T — R? which satisfies (1.5) and if {V* > 3 then a
cyclic order o(C) on p(V*) coincides with a cyclic order which is
generated by the orientation of 0D? = S1.

Remark 3.1.1. A map ¢|y+ : V* — p(V*) is bijective whence a
ternary relation p(C) on o(V*) defined by following correlation

C(v1,v2,v3) = p(C)(p(v1), p(v2),p(v3)), wvi,v2,v3 € V™,

s a relation of cyclic order.
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Remark 3.1.2. We can define a cyclic order in a natural way on
an oriented circle S': an ordered triple of points x1, x9, 3 € S!
is cyclically ordered if these points are passed in that order in the
process of moving along a circle in a positive direction.

4 5 6 5 6 7
3 7 4 3

2 1 2 1

4 5 4 5 6
3 4 7
7
3 1
2
1 9

Figure 3.1: On the left a tree is D-planar.

Theorem 3.1.2. If V* contains just two vertices, a tree T is D-
planar.

If 4V* > 3 then o D-planarity of T is equivalent to satisfying
the following condition:

o for any edge e there are exactly two paths such that they pass
through an edge e and connect two adjacent vertices of V'*.

Proof. If fV* = 2, then T is homeomorphic to a segment and a set
of its terminal vertices coincides with V* = Vi,., see Lemma 1.5.1.
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It is obvious that there exists an embedding ¢ : T — R? satisfying
Definition 3.1.1 and a tree T is D-planar.

Let §V* > 3 and T be D-planar. It means that there is an
embedding ¢ : T — R? which satisfies Definition 3.1.1.

Let e € E(T) be an edge of T connecting vertices wi, wy € V.
We fix a point x € ¢(e) \ {¢(wr), p(ws)}.

A topological space T is one—dimensional compact hence its
homeomorphic image ¢(7") is one-dimensional [15]. Then z €
(R2\ ¢(T)). It follows from (1.5) that = € Int D?, therefore

z € (R?\ (p(T)UdD?)).

By Lemma 1.5.1 there is a connected component U; of a set R? \
(¢(T) U dD?) such that a point  belongs to a boundary of it.

Corollary 1.5.1 states that OU; N (T) = ¢(P(vj,v})), where
¢(v5), p(v}) are adjacent with respect to a cyclic order of p(V*) in-
duced from 0D?, see Remark 3.1.2. According to Definition 3.1.1,
it is the same as vertices v; and vg» are adjacent under a cyclic order
C on V™.

So e € P(vj, v;) and vertices v, vé- are adjacent. It means that
for any edge of a D-planar tree T there is at least one path that
satisfies the condition of theorem.

There exists an open neighborhood W = e\ {wi,ws} of a
point ¢ ~1(z) in T that is homeomorphic to an interval. Using the
compactness of 7'\ W and theorem of Shenflies [26,43] we can
find a neighborhood U of z in R? \ dD? and a homeomorphism
h : U — Int D? such that h(z) = (0,0), ho p(T) = hop(W) =
(—=1,1) x {0}. Let us designate

Ut =h ' {(z,y) € Int D? |y > 0}),
U™ =h '({(z,y) € Int D? |y < 0}).

It is clear that U C o(T)U Ut UU™. If for some component
Uy of R?\ (o(T') UOD?) the intersections Ut NU}, and U~ NU}, are
empty, then « ¢ Uy, and e ¢ P(vg,v},) in terms of Lemma 1.5.1.
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By the construction, the sets Ut and U~ are connected and
they belong to R?\ (p(T)UdD?). Thus there are two components
U; and U; such that UT € U;, U~ € Uj, z € U; NU; and e €
P(v,vi) N P(vj, 7).

By Corollaries 1.5.1 and 1.5.2 for any edge of T' there are no
more then two paths such that they connect adjacent vertices of
V.

In order to verify that there are exactly two such paths it is
sufficient to prove that U; # Uj.

Suppose that for some component U; of R?\ (o(T) U dD?) we
get U\ p(T) =UTUU~ C U;. An open connected subset U; of
R? is path-connected [16].

Denote aj = (0,1/2), ag = (0,—1/2) € Int D%, vy = {0} x
[-1/2,1/2] C Int D?, a* = h™Y(af), a= = h™(ag) € U, v =
h~!(70)-

It is obvious that the points aar and a, are attainable from
domains h(UT) \ 7o and h(U~) \ 7o by a simple continuous curve.
Therefore the points a™ and a~ are attainable from the domain
U; \ v and there is a cut 4 of U; \ v between a™ and a™ |26,43].

Then p = yU# is a simple close curve such that pNp(T) = {z},
p\ {z} € U; and h(u) 2 7o

By Jordan’s theorem g bounds an open disk G [26,43].

The point x does not belong to the compact % hence there
exists its open nelghborhood U C U such that U N 4 = &. Since
h maps a neighborhood U of a point z into an open neighborhood
of origin then there exists an ¢ € (0,1/2) such that a set

Qo = {(z,y) € D*|2® +y* <%}
does not intersect the set h(%). It follows that

Qo Nh(p(T)UID?) = QoNhoyp(e) = (—¢,e) x {0},
QoNh(p) =QoN~y = {0} x (—¢ )
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Denote Q = h~1(Qo). Evidently, a set @ is an open neighborhood
of z.
Open sets

' ({(z,y) € Qolz < 0}) and b~ ({(z,y) € Qo|z > 0})

are connected and do not intersect the set pu. Therefore one of
them must be contained in a disk G, another should belong to an
unbounded domain R?\ G.

Sets h=((—¢,0) x {0}) and h=1((0,e) x {0}) belong to the
intersection of these domains with the image ¢(e) of e. Hence
o(e) NG # @ and p(e) NR?\ G # @ hold true.

A segment ¢(e) is divided by x into two connected arcs that
have no common points with ¢ = 0G. Thus one of them should
belong to G and the other is contained in R?\ G.

Finally, the following statement is true: either ¢(wy) or ¢(w2)
belongs to G and the other point is contained in R? \ G.

Let p(w1) € G, p(ws) € R?\ G.

By the construction, curves 0D? and u have no common points
since either G C Int D? or IntD? C G. But @ # (yNQ) C
(uNU;) € (uNnInt D?). Therefore G C Int D?.

Let us denote by 7" a graph with a set of vertices V(1) =
V(T) =V and a set of edges E(T) = E(T)\ {e} = E\ {e}.

It is easy to show that the graph T has two connected compo-
nents 71 3 wy and 1> 3 wy. The images of them do not intersect
with the curve p, therefore a set ¢(71) together with the point
¢(w1) belongs to G C Int D? and ¢(T3) C R?\ G.

By relation p(w;) € G C Int D? and Condition (1.5), the ver-
tex wy has degree at least 2. Therefore it is adjacent to at least
one edge of T except e that is an edge of T3. It means that a tree
T1 is non degenerated.

Since degrees of all other vertices of T} in T are the same
as degrees in T then Viep(T1) € Vier(T) U {w1}. As we know
#Vier(T1) > 2 whence there is w € Vier(T1) N Vier (T).
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By the construction p(w) € G C Int D?.

On the other hand it follows from (1.4) and (1.5) that p(w) €
p(V*) C oD

We have the contradiction with the assumption that U\ ¢(T") C
U; for some 3.

So, there are exactly two components U; # U; of a compliment
R2\ (¢(T) U 0D?) such that the point = € ¢(e) \ {p(w1), o(w2)}
which is contained in the image of an edge e of T' is a boundary
point of. Consequently, by Corollaries 1.5.1 and 1.5.2 there are
exactly two paths such that they pass through an arbitrary edge
of T" and connect the adjacent vertices of V*.

Let #V* > 3 and for any e € E(T) of T there are exactly two
paths such that they pass through this edge and connect adjacent
vertices of V™.

We should prove that the tree T' is D-planar.

At first we consider a relation C' that is a full cyclic order
on a set V*. It generates a convenient relation pc on V*, see
Definition 1.6.5. Let us examine a set of the directed paths

P ={P(v,v)|v'pcv}

inT.

By Definitions 1.6.1 and 1.6.5 two vertices v, v € V* are ad-
jacent with respect to a cyclic order C iff either vpcv’ or v/pov is
true. These correlations can not hold true simultaneously, since a
pair of vertices v, v’ would generate a po-cycle, see Definition 1.6.3,
and this contradicts to Proposition 1.6.3 and Corollary 1.6.2 since
gV > 3.

It follows from the discussion above that for every edge e of T'
there are exactly two paths of the set P passing through e.

Let us consider a binary relation p on the set V, which is defined

by a correlation
vov' & P(v,v') € P. (3.1)
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Evidently, relation p is dual to the relation pc ( vipve <
vapcv1). Therefore by Definition 1.6.2, p is the convenient relation
on V*. So, a minimal relation of equivalence p on V* containing
p coincides with a minimal relation of equivalence pc on V* con-
taining pco. Thus the elements of the set V* generate a p-cycle,
see Proposition 1.6.3 and Corollary 1.6.1.

Let e be an edge of the tree T'. We should prove that those
two directed paths of the set P that contain e pass through e in
opposite directions.

Let us consider a binary relation p. on V* that is defined as
follows

vpet & Pu,v') e Pied Plu,v).

It is easy to see that a diagram of the relation u. can be obtained
from a diagram of p by removing two pairs of vertices of V* cor-
responding to paths of P which pass through e. Let (v, v}) and
(ve,v5) be such pairs. Therefore the relation p. satisfies the con-
ditions of Lemma 1.6.3.

By this Lemma a minimal relation of equivalence [i, containing
e has two classes of equivalence By, By and v € Bi, va € Bs.

Let w, w’ € V be the ends of e. Let us consider a subgraph T’
of the tree T such that V(T") = V(T) and E(T") = E(T) \ {e}.
It is clear that the vertices w and w’ belong to different connected
components of a graph 7" (if there exists a path P in 7" such
that it connects them then these vertices can be connected by two
different paths P and P’ = {e} in the tree T' ). We denote these
components by Ty, and T}, .

Suppose that for vertices v, v’ € V there is an directed path
P(v,v") passing through e. Let it first passes through the vertex w
and then though w’. Then paths P(v,w) and P(w’,v") belong to
T, sov € Ty, v' € Tyy. In case when the path P(v,v’) first passes
through w’ and then through w we have v’ € T}, and v € T),.

It is easy to see that every class of equivalence of the relation
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fie belongs to the unique connected component of the set 7. By
the construction different classes of equivalence have to belong to
the different components of T".

So, we conclude that either By C T, and By C T}y or By C T}y
and By C T,,. Suppose that first pair of inequalities holds true.

If the directed paths P(vi,v]) and P(vg,v}) pass through e
in the same direction, then P(vi,w)U P(vy,w) C T, and vy €
T,. By the construction T, N V* = Bj thus v € Bj. But it
is a contradiction to Lemma 1.6.3. So, the paths P(v1,v}) and
P(va,v4) pass through e in the opposite directions.

The case B; C Ty, By C T, is considered similarly.

Let us construct an embedding of T into oriented disk D?.

Let D? be an oriented disk (closed disk with a fixed orientation
on the boundary), I = [0, 1] an directed segment and v : [ — D?
an embedding such that ¢(I) C dD?. The direction of a segment
is said to be coordinated with the orientation of disk if a direction
of passing along the simple continuous curve ¥ (I) from the ori-
gin 1(0) to the end (1) coincides with given orientation of the
boundary 9D?.

Every directed path in T is topologically a closed segment
thus for directed path P(v,v") with the origin v and the end v’
there exists an embedding Pp(, ) : P(v,v") — D? such that
P p(y,0y (P(v,v")) € OD? and a direction of P(v,v’) is coordinated
with the orientation of D2,

We fix a disjoint union of closed oriented disks | |-, Dp and
a set of the embeddings

(PP(v,v’) : P(U)U/) - DP(v,v’) ) (32)
(I)P(vﬂj’) (P(’U, 'l/)) - 8DP(U,U/) R P(’U, ’Ul> epP,

such that the directions of paths P(v,v’) € P are coordinated with
the orientations of corresponding disks.
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Let us consider a space

D=Tu| | Dp.
PeP

All maps ®p, P € P are injective therefore a family of sets

{z} U @plx), z€T,
Fm _ PeP:xeP

{$}, T € U Dp\‘bp(P).

pPeP

generates a partition § of the space D.
We consider a factor-space D of D over partition f and a pro-
jection map
pr:D—D.

Let us prove that D is homeomorphic to a disk, the orientations
of disks Dp, P € P give some orientation on D and a map

gpzpr’T:THD

conforms to the conditions of Definition 3.1.1.
At first we investigate some properties of the space D and the
projection pr.

1. The mapping pr is closed.

Recall that a set is called saturated over partition f if it consists
of entire elements of that partition.

Topology of space D is a factor-topology (a set A is closed in
D iff its full preimage pr—!(A) is closed in D). For proof of closure
of a projection map pr it is sufficient to check that for any closed
subset K of the space D minimal saturated set K = pr—!(pr(K))
containing K is also closed.
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From the definition of partition f it follows that

K = (KEnT)u | |(KnDp),
PcP

K = (KnT)u | | (KNDp)u@p(KNP)). (33)
Pep

Sets T, P, Dp, P € P are compacts and all maps ®p are home-
omorphisms onto their images. Thus all sets K N T, K N Dp,
®p(K NP), P e P, are compacts. The graph T is finite hence
#P < 0o and the union on the right of (3.3) is finite. The set K is
a compact, so it is closed.

We remark that we incidentally verified that the space D is
compact.

2. The space D is a compactum.

D is the compact space as a factor-space of compact space D.
Compactum D is the normal topological space and a factor-space
of a normal space over closed partition is a normal space, see [9].
Thus D is a normal space, in particularly, D is Hausdorff space.
Therefore D is compactum.

3. Map ¢ =pr = T — D is the embedding.

By definition, F, N T = {z} for every x € T, hence ¢ is an in-
jective map. The space T is compact and the space D is Hausdorff
thus ¢ is homeomorphism onto its image, see [9].

4. For every P € P a map pr { . Dp — D is an embedding.

P

By definition, for x € Dp we get

(I)p((I)}_pl(l‘)), x € CI)P(P)v

(2}, v € Dp\ p(P). (3-4)

DpNF, :{

The map ®p is injective hence ®p(®5'(z)) = {z}, © € ®p(P).
Finally, F,, N Dp = {z} for every x € Dp and a continuous map



109

pr 5 is injective. Thus it is a homeomorphism of compact Dp
P
onto its image.

5. For every P € P aset pr(Dp\ ®p(P)) is open in D and has
no common points with a set pr(D \ (Dp \ ®p(P))).

Let P € P. The set Dp is open-closed in the space D, hence an
open set Dp\®p(P) in Dp is also open in D. This set is saturated
by definition. Therefore Dp\ ®p(P) = pr—!(pr(Dp\ ®p(P))) and
a set pr(Dp \ ®p(P)) is open in the factor-space D.

It follows from the discussion above that a set D\ (Dp\®p(P))
is also saturated and it has no common points with Dp \ ®p(P).
Thus

pr(Dp \ @p(P)) Npr(D\ (Dp\ ®p(P))) = 2.

6. Let e € E be any edge of the tree T, points wy, wy be the
ends of e and P’, P” € P be paths in P that pass through e. We
designate €* = e\ {w1, ws},

D}y = Dp\dDp C | Dp\@p(P),
peEP
D%» = Dpi\0Dpr C | J Dp\@p(P),
peEP
U = (D?a/ @] @p/(eo)) U (D%u U (I)p//(eo)) LJ 60,
U = pr(U).

U is the open neighborhood of a set pr(e?) in the space D, it is
homeomorphic to open disk and is divided by a set pr(e”) onto two
connected components pr(D%,) and pr(D%,).

To prove this we should remark that sets e, DOP, and D?D,, are
open in D. By definition of partition § for every = € e
F, = {x,®p/(x),®pr(x)} since the set U is saturated.

The set U is open in D. Really, in the first place € is an open
subset of T, secondly, ®ps(e?) is an open subset of closed subspace

we get
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®pi(P') of space Dpr, therefore, ® p/(P')\®pr(e?) is a closed subset
Dps. Let us remark that arcs ®p/(P’) and dDp: \ ®pr(P’) have
®pr- images of endpoints of the path P’as common ends, thus
ODp: \ ®p/(P') N ®pi(e”) = @ and following conditions hold true

ODp: \ pi(e°) = (ODpr \ Dpi(P')) U (Dpi(P')) \ @pr(e)) =
= (0Dp: \ p/(P) U (@pr(P)) \ @pr(e”)).

So, a set D pr \ @ pr(e°) is closed in Dpr and a set D%, U®pi (V) =
Dp\(0Dp\®pr(e?)) is open in Dpr. Similarly, a set D%, U® pr (€?)
is open in Dpn. Sets T, Dps and Dpr are open-closed in space D.
Thus the set U is open in D.

Finally, the set U = pr(U) is open in D. This set is a result of
gluing

U= (Dopu U @p//(eo)) Ua (D%/ U @p/(eo)) ,
a=®prody!: dpi(e?) — pn(el).

A map « is a composition of homeomorphisms. Therefore U
is homeomorphic to open disk and is divided by pr(e”) onto two
connected components pr(D%,) and pr(D%,).

7. For any Pi,...,P, € P a boundary 0D, of a set D, =
pr(U;_, Dp,) in the space D belongs to pr(l;_, Pi) = pr(T) N D,,.

It follows from property 5 that dpr(Dp,) C pr(®p,(F;)) =

pr(FP;) for any i € {1,...,n}. Hence

c Jowr(pr) < Jor(r) =pr(J P) -
=1 =1 i=1

8 LetP,...,P,e€P,D,=
an edge of T such that pr(e®)
without ends.

Ui, Dp,, Dy, = pr(D,). Let e be
N D,, # @, where €° is an edge e
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A set pr(e”) belongs to Int D,, iff at least one point y € pr(e®)
has a neighborhood in D,, which is homeomorphic to open disk.
Otherwise, a set pr(e”) belongs to 0D,,.

If pr(e®) C Int D,, then a set pr(e’) has a neighborhood in D,
which is homeomorphic to open disk and both paths P’, P € P
passing through e belong to a set {Py,..., P,}.

If pr(e) C D, then exactly one of the paths P’, P" belongs
to {Pl, e ,Pn}.

Suppose that paths P’, P” € P pass through the edge e. By
the definition pr(e®) C D, Npr(T) = pr(JlL, P,), so at least one
of them belongs to {Py,..., P,}. We consider two possibilities.

We assume that P = P, P = P;, k,s € {1,...,n}. Then a
set

U= pI‘((D?D/ U Pp (60)) U (D?gn U (I)p//(eo)) U 60) Cc D,

is an open neighborhood of pr(e®) that is homeomorphic to an
open disk, see 6.

Let P' € {P1,...,P,}, P" ¢ {Py1,...,P,}. In this case U =
U'uU"Ue, U =pr(D%) C D, but aset U” = pr(D%,) has no
common points with D,,, therefore pr(e®) C dD,,.

Suppose that for some y € pr(e®) in D,, there exists an neigh-
borhood W, € D,, homeomorphic to open two dimensional disk.
By using theorem of Shenflies [26,43] we can find a small neigh-
borhood Wy of y in D, such that it is homeomorphic to an open
disk and satisfies following conditions:

o A gset I/TZ in the space D,, is homeomorphic to a closed disk
and is separated from compacts pr(T \ e’) and D \ U.

° W7y intersects pr(e®) by a connected segment that is a cut of
the disk W,

Then the set pr(e”) divides W, onto two connected components
Wi UWy =W, \ pr(e?), Wi N W = @ such that Wi NWa > 9.
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By the construction Wy CUND, and Wi, Wy C(UND,,)\
pr(T). Let us remind that P’ € {Py,..., P,}, thuspr(Dp/) = D' C
D,,. Similarly, P” ¢ {Py,...,P,} hence pr(D%,) N D,, = @, see
property 5. Therefore U N D,, = U’ Upr(e°), where U’ = pr(D%,),
see property 6, and U N D, Npr(T) = pr(e®) C dD’, where D' =
pr(Dpr). )

Thus y € 9D’ and the set W, is the open neighborhood of y in
closed disk D' and W, N (D' \dD') = Wy UWs, y € W1 NW3. By
Lemma 1.7.1 we can conclude that W7 = W5 but it contradicts to
the assumption that W7 N Wy = @.

So, if {P', P"} ¢ {P1,..., Py}, then there is no y € pr(e®) that
has an open neighborhood in D,,, which is homeomorphic to open
disk.

9. Let Pi,...,P, € P. Let us describe a structure of boundary
dD,, of D, = pr(U;_, Dp,) in D.

Denote by E,, C E a set of all edges of the tree T" such that
exactly one of two paths P, P” € P passing through e € E,
belongs to {Py,...,P,}. As we know, see Condition 8, pr(E,,)
0D,, and if for some edge e € E we get e ¢ E,, then 0D, Npr(e)
{v/;v"}, where v/, v" € V are ends of e.

Similarly, denote by V,, C V a set of all vertices of T" such that
for a vertex v € V,, the following condition satisfies: pr(v) € D,
and all edges that are adjacent to v belong to E'\ E,,. It is easy to
show that the set V}, is discreet and pr(E,) Npr(V,,) = <.

From the discussion above and Condition 7 it follows that

C
-

pr(Ey) € 9(Dy) C (pr(En) Upr(Va)) . (3.5)

10. Let Py,..., P, € P. Aset D, = pr(U;,; Dp,) is connected iff
then J;_, P; is a connected subgraph of the tree T'.

Let i, P; = T’ is a connected subgraph of 7. Then D, =
pr(T") Ui, pr(Dp,), all sets pr(1”), pr(Dp,), i € {1,...,n} are
connected and pr(T")Npr(Dp,) # &, i € {1,...,n}. Hence the set
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D,, is connected.
Next, let iy Dp, =T'UT", T'NT" = & and sets T", T" are

nonempty and closed. Every set P;, i € {1,...,n} is connected,
therefore, either P, € T or P; € T”. Without loss of generality
we can change indexing of the elements of {Py,...,P,} in such
way that for some s € {1,...,n — 1} the following conditions are
satisfied

S n

r=Jr, 7= P
i=1 i=s+1
Every set

S n
D'=1T'u|JDp, D"=T1" | Dp,
i=1 i=s+1

is closed, whence sets D' = pr(D’) i D" = pr(D") are closed, see
Condition 1. By the construction D'N D" = @. Let y € D' N D",
A map pr is injective by definition on the set pr=!(D \ pr(T)) and
sets D’ and D" do not intersect on pr—!(D\pr(T)), thus y € pr(T).
Hence y € pr(T N D) Npr(T ND") = pr(T") Npr(T"). But as we
know, see Condition 3, the map ¢ = pr | is bijective, therefore
pr(T") Npr(T”) = pr(T" NT") = &. We get a contradiction, thus
D'NnD"=wo.

Hence D,, = D’ L1 D" an sets D', D" are closed and nonempty.
Therefore the set D,, is not connected.

Finally let us prove a D-planarity of the tree T.
Let for some n, 1 < n < §P directed paths

Py = P(vy,v}),..., P, = P(vp,v),) € P

n

are fixed and D,, = Ui, Dp,, Dy, = pr([)n).
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For every i € {1,...,n} we denote by 4; an directed arc of
dDp, from point ®p,(v]) to ®p,(v;) which has no other common
points with an arc ®p, (F;).

Suppose that the objects under consideration comply with the
following conditions.

(i) A space D,, is homeomorphic to a close two-dimensional disk.

(ii) There exists at least one edge e € |J;-_; P such that its image
pr(e) is contained in a boundary circle 9D, of D,,.

(iii) A disk D,, is oriented in the following way: for every i €
{1,...,n} and every edge e € P; such that pr(e) belongs to
0D,, an orientation of e generated by the direction of P; =
P(v;,v}) maps by pr onto an orientation of D,,.

(iv) For every i € {1,...,n} an arc ; = pr(%;) connects a point
pr(v}) with a point pr(v;) and has no other common points
with a set pr(7") and orientation of this arc is consistent with

the orientation of D,,.

We should remark that for n = 1 and any path P = P, € P if
we take an orientation on Dy = pr(D,) induced from Dp by using
pr, then Conditions (i)—(iv) always hold true. By the construction,
Conditions (iii) and (iv) are true, (i) follows from Condition 4, (ii)
follows from Condition 8.

We also remark that it follows from Condition 8 that an edge
e € Ui, Pi belongs to dD,, of D, iff e € E,,. Thus Condition (iii)
is well-posed. As well all boundary points of D,, in the space
D possibly except a finite number of isolated points from the set
pr(V,,) belong to 0D,,.

Let an edge e € |J, P; satisfies Condition (ii). Then e €
E, and there is the unique path P,y1 = P(vpy1,0,,,) € P\
{Pi1,..., P} such that it passes through the edge e. Let e € P,
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where P, € {Pi,..., P,} is the second path among two paths from
the set P which passes through the edge e.

Let us consider a disk Dp,,, and its image D' = pr(Dp,.,).
By Condition 4 it is also the closed disk. Let I' = D, N D’. Tt is
obvious that I' is closed.

By Condition 5 a set pr(Dp, ., \®p, , (Pnt1)) is open in D and
does not intersect D,,. It follows from Condition 4 that

pr(DPn+1 \(I)Pn+1(Pn+1)) =
= pr(DPrL+1)\ pr O¢Pn+1 (Pn+1) = D/ \ pr(PnJFl) )
Pr(@p,,, (Pas1)) = pr(Post) C (D \ pr(Part)) -

Therefore
I'=0D,NdD" Cpr(Pui1).

Let us apply Condition 9 to D,, and D’. By (3.5) the set T’
consists of images of edges which belong to the path P,y; and
possibly from a number of images of vertices of a tree T'.

Let us check that the set I' is connected.

If it is not the case it follows from what we said above that there
are two vertices wy, wo € V, w1 # we of T such that they belong
to the path P,y; and a projection of a path P(wy,w2) C Phyq
which connects them in 7" intersects I' by a set {pr(w;), pr(ws)}.
Then pr(P(wi,w2)) N Dy, = {w1,wa}.

On the other hand, the set D,, is connected thus 77 = (J;' | P;
is a connected subgraph of T, see Condition 10. From Condition 7
it follows that wy, we € V(T"), therefore there is a path P’ (w1, ws)
connecting them in 7”. This path has to connect w; with ws in
T. But pr(P'(wy,wsz)) C D, hence P'(wy,ws) # P(wy,ws3). So,
vertices wy and wy of T can be connected in T by two different
paths which is impossible in the tree T'.

This contradiction proves that I' is connected.
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It follows from the connectedness of I' and from the inclusion
pr(e) CI'Npr(E,) that I' C pr(E,). Thus

I CoD,noD ,

where 0D’ = pr(0Dp,. ) is a boundary circle of the disk D’.
By the discussion above and from I" C pr(FP,41) it is easy to
understand that
I = pr(P(v,v"))

for some v, v' € VN Pyy1, v # 0.

It is obvious that P(v,v") is homeomorphic to a closed segment.
From the Conditions 3 and 4 it follows that it is embedded into a
boundary circles dD,, and 9D’ by means of maps

p = Pr : P(v,v") — Dy,
P(v,0)

' =pr obp . ¢ P(v,v') — D'.
Therefore, a set
Dpy1=DoUD =D, Uy D', tp=1py0 ()7,

is a result of a gluing of closed disks D,, and D’ by a segment that
is embedded into the boundary circles of these disks. Consequently
the set D,,+1 is homeomorphic to a closed disk.

Let us denote D41 = U?:Jrll Dp,. It is clear that

n n+1
Dypi1 = pl“<U DPi) Upr(Dp,,,) = pl"( Da) = pr(Dp1) -
i—1 -1

1= 1=

So the space D,,4+1 constructed according to the set {Py,..., Ppt1}
satisfies Condition (i).

Disks D,, and D’ are oriented. The orientation of D’ is gener-
ated by an orientation of Dp, ., by means of the map pr.
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By Condition (iii) applied to D,, and D’ we get two orientations
on e. One of them is induced from an orientation of P, O e and
is coordinated with orientation of D,. Another is generated by
direction of P,y1 and is consistent with an orientation of D’.

As we said above the directed paths P, P,+1 € P containing an
edge e have to pass through e in the opposite directions. Therefore
the orientations induced on I' from D,, and D’ are opposite. Hence
the orientations of D, and D’ are coordinated and generate an
orientation of Dy,41. It complies with the following condition

e for any simple arc o : [ — 0D, N9D,11 an orientation of «
is consistent with orientation of D, iff an orientation « is
coordinated with orientation of D,;

e for any simple arc 3 : I — 0D’ N 0D, 1 an orientation of (3
is consistent with an orientation of D, iff it is coordinated
with an orientation a disk D’.

Disks D,, and D’ satisfy Conditions (iii) and (iv). So, according
to what has being said D,,41 also satisfies Conditions (iii) and (iv).

Suppose that the set D,, 1 does not satisfy Condition (ii). Then
E,+1 = &, see Condition 9 and Remark (iii), and 0Dp41Npr(T) C
pr(V). Thus a set 0Dy41 Npr(7T) is finite.

The following correlations are implicated from Condition 5

n+1 n+1

D1 \pr(T) € pr({J (DR N\ ®p () = | pr(Dp \ @r(R)).
=1 =1

From Condition 4 it follows that for every i € {1,...,n+ 1} a set
pr(Dp, \ 0Dp,) C Dy4q is homeomorphic to an open disk. Hence

n+1

U pr(Dp, \ @Dp) € Dyt \ OD,1
=1
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From this correlation it follows, see Condition (iv), that

ODpy1 \ pr(T) C

n+1
C | (pr(Dp, \ @Dp,) Upr(0Dp, \ @5,(P))) | N ODps1 =
i=1
n+1 n+1 n+1
—Upf@DP\CI’P Upl"% U%‘-
i=1 i=1

A set UZ 1 i is closed in D hence it is also closed in 9D, .
Therefore, a set 0Dp41 \ U?jll v; have to be an open subset of a
space 0Dy 1. But

n+1

0Dni1 \ | J % € 0Dpy1 Npr(T) € pr(V)
i=1

and this set is finite. Consequently,

n+1
8Dn+1 = U Yi -

From Condition (iv) it easily follows that open arcs
i\ {pr(vi),pr(v))}, i € {1,...,n+1} are pairwise disjoint. There-
fore every point of a set 0Dy 1 Npr(T) = U”H{pr(vl) pr(v))}is a
common boundary point of exactly two arcs of the family {~;};"” ”+

It follows from the choice of an orientation of arcs ~;, @ 6
{1,...,n+ 1} that if for some s, r € {1,...,n+ 1} either vy = v,
or v, = v/ is true, then s = r. Thus for every i € {1,...,n + 1}
there is the unique j(7) € {1,...,n + 1}, such that v; = v} and if
r # s then j(r) # j(s) . We also remark that by the construction
n>1,thusn+1>2and j(i) #¢,i€{1,...,n+ 1}.

Therefore, on the set {1,...,n+ 1} there is a transposition o
without fix points such that v; = v;(i), i€ {l,....,n+1}. Let
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o = c1 - ¢ be a decomposition of ¢ into independent cycles. Let
- - / / /
c1 = (i1 ...ip). Then vy = v, ... v, , =0} , =,

From the definition of the set P we get vipcv;, i € {1,...,n+
1}, since P; = P(v;,v,) € P. So, it is true that

Uy

m

Vi1 PCVigs + s Vig 1 PCVipy s Vi, PCViy

thus vertices of the set My = {v;,,...,v;, } generate a pc-cycle,
see Definition 1.6.3. From Corollary 1.6.2 it is follows that the set
M is a class of equivalence of a minimal equivalence relation p¢o
which contains the relation pc. By Proposition 1.6.3 and Corollary
1.6.2 the relation pc has the unique class of equivalence V*. Hence
My =V* oc=c,n+1=4V*=4P and D,+1 = D.

From what was said above it follows that for n+1 < P the disk
D+ satisfies Condition (ii). Thus, for n + 1 < #P the disk Dy
satisfies (i)—(iv), but for n+1 = P it complies with conditions (i)
and (iv).

Finally, starting from any path P = P, = P(v1,v]) € P, we
can sort out elements of a set

P = {P1 = P(vl,vi),. . .,PN = P(’UN,U?V)}
in a finite number of steps so that for every set
n
Dn:pr(UDpi), nefl,...,N—1},
i=1
the conditions (i)—(iv) are true and for the set

N

Dy = pr(U DPZ.> = pr( U Dp) =pr(D)=D

i=1 PeP

conditions (i) i (iv) are also true.



120 CHAPTER 3. CRITERION OF A D-PLANARITY

Thus Dy = D is closed oriented two-dimensional disk, ¢ =
pr|,.: T — D is an embedding, see Condition 3.

For every edge e € E both paths of P passing through this edge
belong to a set { Py, ..., Py}, thus Exy = @ and 0D = Uf\il ~; with
open arcs 7; \ {pr(v;), pr(v;)} are pairwise disjoint. It is clear that

N
(M) NoD = J {pr(i),pr(w)} = |J {pr(v),pr(v))} =V*.

i=1 P(vo')eP

An orientation of D generates some cyclic order O on the set
pr(V*) . A map ¢y = Pl V* — pr(V*) is bijective, there-
fore, a map ¢, 1 generates on the set V* some cyclic order C’
which is an isomorphic image of a cyclic order O (C'(vy, va,v3) <
O(pr(vy), pr(vz), pr(vs))).

We induce a convenient relation por on V*, see Definition 1.6.5.
From Condition (iv) it follows that for every i € {1,..., N} we have
vipcrvi. On the other hand, by definition of the set P it follows that
v'pcv iff P(v,v") € P. But P ={P,..., Py}, hence if P(v,v) €
P, then P(v,v") = P; = P(v;,v}) for some i € {1,..., N}. There-
fore the following conditions hold true

Vpcv = vpov, v, €VE,

and the relation pos contains pc.

With the help of convenient relations pc and peor we can induce
on V* the relations of cyclic orders Cy and Cp,, respectively, see
Definition 1.6.6 and Proposition 1.6.4. From Definition 1.6.6 it
is easily follows that if pcr contains po then €, contains Cp.
In other words, an identical map Idy+ is monomorphism of cyclic
order €y, onto C_,, see Definition 1.6.7. From Lemma 1.6.2 it
follows that C,, = C and C,_,, = C’, hence the map Idy~« is
monomorphism of the cyclic order C' onto C’. Lemma 1.6.1 implies

that the map Idy+ is an isomorphism of cyclic order C' onto C”.
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By the construction a map Lpal is an isomorphism of cyclic
order O onto C’ thus g is an isomorphism of cyclic order C' = C’
onto a cyclic order O which is induced onto ¢(V*) from an oriented
circle 9D.

Finally, the map ¢ satisfies all conditions of Definition 3.1.1
and a tree T' is D-planar.

O]



Chapter 4

The realization and main
theorem

4.1 The conditions for a graph

Let G C R? be a finite connected graph with a strict partial order
on vertices. We assume that every vertex of G has a degree not
less than 2.

A set V x V is divided into two classes C7 and Cy. Vertices
v; and vg are contained in C if they are comparable (i.e. either
v1 < vy or vg < v1 holds true) and Cy otherwise.

Definition 4.1.1. Cr-cycle of G is a subgraph v which is a simple
cycle such that every pair of adjacent vertices of v belongs to C1.

In what follows we will consider the following conditions on a
graph G C R>:

A1) there exists the unique Cr-cycle 7;

- k
A2) G\v=F = | T;, where F is a forest such that
=1

1=
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o if v < v (v > v) for some vertex vy € T; C F, where
v € G, then vy < v (v; > v) for an arbitrary v; € T; C F,
l # k;

e deg(v) = 2s > 4 for an arbitrary vertex v € G \ 7;

A3) The condition for a strict order on Cr-cycle 7: for any vertex
v of the subgraph + and its adjacent vertices v; and ve such
that vy, v9 € 7y the following conditions hold true:

e if deg(v) = 2, then deg(vi) > 2, deg(ve) > 2 and there
exists the unique index ¢ such that vy, ve € Tj;

o if deg(v) = 2s > 2 (deg(v) = 2s+ 1), then v; S v 2 v9
(1 Svs ).

A4) The condition for a strict order on G: if v',v"” € Cy, then
from v > v’ it follows that v > v".

We remark that from A2 it follows that all vertices of any connected
component T; are pairwise non comparable.

If A2 holds true, then, obviously, there exists a nonempty sub-
set of vertices V* of F' which contains a set Vjer of all terminal
vertices of F' such that V* = V(F) N~. It is clear that the sub-
set of vertices V* of I is divided into the subsets V" such that
Vier(Ty,) C V¥ C Ty C F and V* = |J V™.

7

Definition 4.1.2. A finite graph G C R? is called ®-planar if
there exists a subgraph v and an embedding ¢ : G — D? such that
the following conditions hold true:

e v is a simple cycle;
e G\vy= Ule T; = F is a finite union of trees;

o v contains all terminal vertices of F';
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o ¢(y) =0D?, (G \v) C Int D*.

Theorem 4.1.1. Let G be a graph, v C G be a cycle such that
G\ v =L, Ti, where every T; is a tree.

Then G is ©-planar if and only if every tree T; with the subset
of vertices V;* which has a cyclic order induced from ~ is D-planar
and for any indexes m and n the subset of vertices V.* of the tree
T,, belongs to a unique connected component of a set v\ V.., where
m#n, VX CTj, j=m,n.

Proof. Necessity. Suppose that a graph G is ©-planar. It is clear
that every tree T; is ®-planar. Let us assume that there exist some
indexes s and [ such that the subset of vertices V;* of the tree T}
belongs to two connected components S” and S” of the set v\ V}*¥,
where V;* C Tj. Let us assume that the subset V| of V" belongs to
S" and Vi belongs to S”. Let us consider the following paths: P
which connects the ends of arc S’ (S”) (by construction they belong
to V;*) in G and P, which connects arbitrary two vertices of V;* of
the tree T such that one of them belongs to S’, another belongs to
S”. By our initial assumption there exists an embedding ¢ of paths
©(P1) and ¢(P,). They can be considered as two hordes which are
contained into Int D? with the ends on dD?. They have a common
point which is not a vertex of F' (T}, and T; are disconnected) since
one pair of the ends parts another. It contradicts the fact that ¢
is an embedding.

Suffictency will be proved by an induction on the number n
of trees in the forest F = G\ v = || T;.

Let us regard G as a cell complex. Then the cycle v considered
as a subspace of the topological space G is homeomorphic to a
circle. Fix an orientation on ~. It induces a cyclic order on it.
Now we induce from 7 a cyclic order on each V;* with §V* > 2,
1=1,...,n.

We should remark that the following is straightforward: if for a
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fixed orientaition of v a tree T; with the cyclic order on V;* induced
from ~ is ®-planar, then for an inverse orientation of v a tree T;
with the cyclic order on V;* induced from that orientation of v is
also ®-planar. So the choice of an orientation of v does not affect
the ongoing considerations.

Suppose that every tree T is ®-planar and for arbitrary in-
dexes r and s the subset V" of vertices of T belongs to the unique
connected component of the set v\ V.*, where r # s, Vi=T;Nn,
j=m,s.

Basis of induction. Let F' =T7.

First let Vi* = {v1,v2} for some v1,v2 € V(T1). Since T is
D-planar, then there is an embedding ¢ : T} — D? such that
o(Ty) NOD? = o(V§*) = {w(v1),¢(v2)}. Obviously, the cycle v
consists of two edges with common endpoints v; and vs. Fix some
embedding ¢’ : ¥ — 0D? such that o1(v;) = ¢'(v;), i = 1,2. Now
it is straightforward to see that the mapping ¢ : G — D?,

p1(1), if 7isin 17,
SO(T) = { / .. (4'1)
¢'(1), when 7 isin 7,

is well defined and complies with Definition 4.1.2.

Now let §V}* > 2. At first we define a bijective and continuous
map ¢’ : v — 0D? such that the cyclic order induced on ¢’(v) by ¢’
coincides with the cyclic order induced by the positive orientation
of D?. It is obvious that it is an embedding and /() = 9D?.

Let us consider the tree T7. From its ®-planarity it follows that
there exists an embedding ¢ : Ty — D? such that ¢ (T}y) C D2,
e1(V*) € OD?, o1(Th \ Vi) C Int D2, where Vi,,.(T1) C Vi* C V.
We can choose 1 in such way that ¢1]yx = ¢’ vy since a cyclic
order on vertices of V;* is consistent with the cyclic order on 9D? =
¢’ () which is in turn induced by ¢’ from the cyclical order on ~.

Then it is easy to see that the mapping ¢ : G — D? given
by (4.1) is well defined and satisfies all requirements of the Defini-
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tion 4.1.2.

Step of induction. Let G = yUF, F = G\~ = LI5=: 75,
n > 1. Suppose that for any graph G’ with a cycle 4/ such that
F' = G'\v = ||, T/ is a forest and k < n our Theorem holds
true.

First we are going to prove that there is a tree T, in F' such
that the set |J ;5 Vj 1s contained in a single connected component
of the set v\ V.

For every i = 1,...,n we shall denote by v(T;) the maximal
cardinality of subsets M; C {1,...,n} which satisfy the follow-
ing property: a set Uje M; VJ* is contained in a single connected
component of the set v\ V;*.

Asn>1thenl <v(T;) <n-1,i=1,...,n. And v(T;) =
n—1iffaset ki VJ* is contained in a single connected component
of the set v\ V;*.

Let v(T;) < n — 1 for a certain i. Let us designate all com-
ponents of the complement v\ V;* by ~+i, ... 7’%@)' Then there
exist at least two different indexes v’ and r” for which relations
74N U Vj # @ and v N U, V;" # @ hold true.

We can select r’ in such way that yf/ﬁuglzl V= 'y;',ﬂUjeMi Vi
for a subset M; of {1,...,n}\ {i} with cardinality §M; = v(T;).
Fix i’ ¢ M; U {i} and let r” be an index such that V;; C ~%,. It is
clear that r’ # . Since both V;* and {J;¢,,, V;* are contained in a
connected subset v\7., of the cycle v and (v\~%,)NV;F C (vy\v2)N
’yf;,, = & then the set V;* U Uje g, Vj lies in a single component of
the complement v\ V7 and consequently v(T) > v(T;) + 1.

So, in a finite number of steps we shall find an index s such
that v(Ts) > n—1, therefore a set J; ., V/" is contained in a single
connected component of the set v\ V.

Without loss of generality we can regard that v(T),) = n — 1.
Repeating the argument we used to verify the base of induction
we can find an embedding ¢,, : yU T}, — D? which maps v onto
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OD? and such that an orientation on ¢,(y) = dD? induced by
n coincides with the positive orientation on this set induced from
D?.

Lemma 1.5.1 implies that D?\ ¢, (T,,) = U, Us, where U, & D?
and Uy C 0D? U ¢,(T},) for any s. By the choice of T}, the
subset |J;,, V;* of vertices of a forest [ = U= T; belongs to a
single connected component 7o of the set v\ V*. From this and
from Corollary 1.5.1 it follows that there exists an index m such
that a domain U, satisfies the inclusions ¢, (v0) C (U, N OD?),
OUm \ ©n(70) = ©n(P), where P = P(v/,v"”) is a path in T,, which
connects a pair of vertices v', v" € V*.

Let us consider a cycle ¥ = v U P in G. It is clear that it is
simple. Denote

n—1
G'ZV/UF’:MUUTZ-.
i=1

Since F' N~ = U?:_ll V* C 70 by construction, then F' N~ C v
and F/ = G\ 7.

The following claim is straightforward. Suppose we have two
oriented circles S1 and So and two arcs v C S1 and v9 C So such
that orientation of each arc is coordinated with an orientation of the
corresponding circle. Let ® : y4 — 9 be an orientation preserving
homeomorphism. Let also O, k = 1,2, be a full cyclic order on
Sk induced by the orientation of Si. Then Ozl, = ®(O1]4,).

Let us induce an orientation on g from v and choose an orien-
tation on ~ which is coordinated with the selected orientation of
Y. Let & = Id : v9 — v0. Then by the claim above cyclic orders
on g induced from v and from 7’ should coincide.

Every tree T;, i € {1,...,n— 1}, with the subset of vertices V;*
which has a cyclic order induced from the positive orientation of ~
is ®-planar by our initial assumption. As V;* C 79, then according
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to what was said above every T; is ©-planar with respect to a cyclic
order induced on V;* from positive orientation of +'.

It is easy to see that since the set U?;ll V.* is contained in
the connected set 79 € v N+’ and by our initial assumption for
any indexes j,k € {1,...,n — 1} the subset of vertices V' of the
tree T; belongs to a unique connected component of a set v\ V¥,
where j # k, then every set V" Is contianed in a single connected
component of a set v/ \ V)5, j #k, j, ke {l,...,n—1}.

As a consequence from said graph G/ = v U "' T; is ®-
planar by the inductive hypothesis. So, there exists an embedding
¢': G' — D? which is compliant with Definition 4.1.2.

Then ¢'(y') = dD?. Let us remind that by construction we
have ¢, (') = OU,,. Evidently, a map v = ¢, o (¢')"1 : 0D? —
OUpy, is homeomorphism. Let us remind (see [26]) that every home-
omorphism of simple closed curves in the plane can be extended
to a homeomorphism of disks bounded by these curves. So, there
exists a homeomorphism 1 : D? — U, such that ©|gp2 = 1.

Let us consider a map ¢ : G — D? defined by the relation

(r) = on(T), when 7 € yUT,,
T Yoy (r), freT,ie{l,....n—1}.
Since ('yUTn)ﬂ(U?;f T;) € +' by construction and Yo' (7) = o
O'(1) = n(7) for every 7 € /(') = D?, then ¢ is well defined.
The sets v U T, and U?;ll T; are closed, so ¢ is continuous. And
it is straightforward to see that this map is injective. Therefore @
is the embedding of compact G into D?.

By our initial assumptions every tree Ty, k = 1,...,n, is ©-
planar with respect to the cyclic order on the set V' = T N~y
induced from v. Then Vi, (T}) € Vi C v, hence v contains all
terminal vertices of the forest F.

Finally, observe that ¢(v) = ¢, (y) = 0D?.



4.1. THE CONDITIONS FOR A GRAPH 129

So, graph G satisfies all conditions of Definition 4.1.2 and by
induction principle conditions on G to be ®-planar stated in The-
orem are sufficient for G with any number of trees in a forest
F=G\n~. O

Remark 4.1.1. If G satisfies Al and A2, then Theorem 4.1.1
holds true for it.

Assume that G satisfies A1l and A2. Let us consider arbitrary
two vertices v, v2 of the set V;* of the subgraph T; of G. The set
7\ (v1 Uwgy) consists of disjoint union of two connected sets v, and

Y2-

Definition 4.1.3. Pair of vertices vi,va € V;* is called boundary
if either v1 or v2 does not contain any vertex of V;* and at least
one vertex of V*\ V.* belongs to it.

Denote by w(vy,v2) the boundary pair, designate by « the set
v, which does not contain any vertex of V.* and at least one vertex
of V*\ V;* belongs to it. It is clear that for every vertex v; of
the boundary pair w(v1, v2) there exists an adjacent vertex ¥; such
that v; € o, where j =1, 2.

Definition 4.1.4. A graph G is called special if the following con-
ditions hold true:

S1) G satisfies A1 and A2;
S2) G is ©-planar;

S3) for arbitrary boundary pair w(vi,ve) € V;* the pair of ad-
jacent vertices V1,02 belongs to the unique set V)*, where
Vi Cc VE\ V¥, 01,72 € o

Remark 4.1.2. If vi, ve is a boundary pair, then the pair 01, Vo
is the boundary pair of a tree Ty, O V,* for a special graph.
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Lemma 4.1.1. If a graph G is special, then the set © = D?\ o(G)
consists of disjoint union of the domains U; such that OU; contains
either one or two nondegenerate arcs of the boundary 0D?, where
¢ : G — D? is an embedding such that p(v) = OD?, (G \ v) C
Int D?.

Proof. Let ¢ : I' — D? be an embedding of the special graph

G such that p(7) = 0D?, (G \ ) C Int D?. Condition A2 holds

true hence there does not exist a domain U; such that its boundary

dU; does not contain an arc of D?. The set of vertices J{o(V;*)}
k

divides D? onto the arcs A;j. Let p(v;) and ¢(vit1) be the end
points of A;. Let us consider two cases:

Case 1: v;,vj11 € Tj. From Corollary 1.5.1 it follows that OU;
contains one arc 0.D?.

Case 2: v; € Tp,vis1 € Tp,. By moving along dD? \ A; from
©(vit1) (¢(v;)) in the direction of ¢(v;) (p(vit1)) we find the first
vertex ¢(v;) such that v; € V¥ C T, (vj € Vi C Ty,). Tt is clear
that there exists the unique path P(v;,vj) (P(vit1,v;)) such that
P(vi,v;) € Ty, (P(vig1,v5) € Try). Condition S2 holds true hence
the pair v;, vj (viy1,v;) is boundary and by S3 for v; there exists a
vertex vj_1 (vj41) adjacent to v; such that vj_1 € Ty, (vj41 € Ty,).
Thus the domain U; such that ¢(v;), (vit1), ©(v;), p(vj_1) € OU;
((vi), o(vit1), p(v;), p(vjt1) € OU;) contains two boundary arcs
of OD?. O

Definition 4.1.5. A special graph G C R? is called A — graph if
it satisfies AS3.

Lemma 4.1.2. If 0 = min{V'}, © = maz{V'} are vertices of A -
graph G, then 0,0 € v and deg(0) = deg(v) = 2.

Proof. We prove lemma for the case of minimal value 0 = min{V'}.
Without loss of generality, suppose that © € T}, where T} is a tree.
From A2 it follows that there exists some vertex v' € () Vier (Tj)
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(v’ is terminal of Tj). Condition A3 holds true hence for v’ there
exists an adjacent vertex vy such that v; < v’. It contradicts to A2
since © = minV. It follows that 9 belongs to a set v\ |JT; which
contains only the vertices of degree 2.

The case 0 = maxz{V'} is proved similarly. O

Let us remind some definitions [9].

A cover I of a space X is called fundamental if arbitrary set
such that its intersection with any set B € I' is open in B is also
open in X. All finite and locally finite closed covers are fundamen-
tal.

Let T' be a fundamental cover of X and for any set A € T’
a continuous map f4 : A — Y is defined such that if x € AN
B(A,B €71) then fa(x) = fp(x). It is known that a map f: X —
Y defined as f(z) = fa(z), where z € A, A € T', is continuous.

Let A be a finite set. It is obvious that a function g : A — R
induces a partial ordering relation on the set A by correlation

!/

"
a <a

if g(a') < g(a”), d',d" € A.

Suppose that there are two partial orders < and <’ on A. We
will say that a partial order <’ extends an order < if the identical
map Id : (A, <) — (A, <) is monotone.

Lemma 4.1.3. Let us consider A-graph G as CW -complex. There
exists a continuous function g : G — R on the topological space G
which satisfies the following conditions:

e g maps a partially ordered set V(G) of vertices of G into R
monotonically;

e local extrema of the restriction g|_ are exactly vertices of G

.
with even degree which belong to the cycle v;
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o any tree T;, i = 1,...,k of F = G\ 7 is contained in some
level set of the function g.

Then a partial order <" induced by g on the set V(G) of vertices
of G is an extension of a partial order < on V(G).

Proof. Let us consider a partition f of the set V(G) elements of
which are vertices with degree 2 (they belong to v\ F by A2) and
sets V(T;), i =1,...,k of vertices of trees of F.

From Condition A2 easily follows that relation of partial order
on the set V(G) induces a partial order on the quotient set V =
V(G)/f. Let us denote a projection map by « : V(G) — V. It is
monotone by the construction.

It is evident that there exists a monotone map § : V — R
A composition g = gon : V(G) — R is a monotone map as a
composition of monotone maps. From the construction it follows
that any set V(T;), i = 1,...,k belongs to some level set of a
function g.

For any edge e € E(G) we fix a homeomorphism g, : e — [0, 1].
It evidently maps the endpoints of e on the set {0,1}, therefore
3. 1({0,1}) CV(G), go g-1(0) and go g, (1) are defined.

Let us denote

m =min(go g, (0),g0 4. (1)),
M =max(go g, 1(0),g0g,1(1)).

For every t € E(G) we consider a monotone function

he : [0,1] — [m, M],
he i t— (1—1)g(3:'(0)) +tg(g.' (1)),

and also a map

ge:heogeze_’[maM}-
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It is obvious that for any two edges e;, e2 € E(G) which have
a common endpoint v € V(G) it holds true that ge, (v) = ge, (v) =
g(v). This allows us to extend a function g on the edges of G with
the help of the following correlation

g(z) = ge(x), forxece.

The set of all edges of G generates closed covering of a topological
space (G. Graph is finite therefore such covering is fundamental
and g : G — R is continuous, see above.

It is also obvious that if g(v') = g(v") for endpoints v', v” of
some edge e, then ge(e) = g(v') = g(v"). Otherwise, a map g, is a
homeomorphism. By the construction we get that g(v') = g(v”),
where v/, v € V(T;) and T; € F. Therefore g(T;) = ¢; € R,
i=1,...,k, and any tree T; belongs to some level set of g.

Next to the last condition of Lemma easily follows from A3. [

4.2 Main theorem of realization

Theorem 4.2.1. If a graph G is a combinatorial diagram of some
pseudoharmonic function f, then G is A — graph.

If a graph G is A — graph, then a partial order on V(G) can
be extended so that the graph G with a new partial order on the set
of vertices will be isomorphic to a combinatorial diagram of some
pseudoharmonic function f.

Proof. In order to prove the first part we should show that for a
diagram P(f) of pseudoharmonic function f Condition S3 holds
true. Suppose that for some boundary pair w(vi,ve) € ¢q(f) N
T; (the existence of which follows from C1 — C3, see [31]|) the
adjacent pair of vertices 01,02 € ¢(f) belongs to different sets
Ty and Tj, where i # ki # [, | # k and v1 € T}, 02 € Tj.
Then for a vertex 01 (02) there exists v; (v2) such that v €
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q(f) N Ty, (:52 € q(f) NT;) and the pair B, 01 (62,52) is bound-
ary for the tree Ty (7;). It means that a domain U; such that

oU; > go(vl),go(vg),go(62)7go(61),go(51),gp(%g) contains more than
two boundary arcs but it contradicts to Lemma 4.1.1.

Let us prove the second part of theorem. Suppose that a graph
G is A — graph. Then there exists an embedding ¢ : G — D? such
that ¢(y) = 0D?, p(G\ ) C Int D2, From Lemma 4.1.1 it follows
that the set © = D? \ ¢(G) consists of disjoint union of domains
U, such that OU; contains either one or two arcs of boundary 0D?.

Next we fix a continuous function ¢ : G — R that satisfies
the conditions of Lemma 4.1.3 and consider a continuous function
f=gop!:p(G)— R on the set ¢(G).

Our aim is to extend f on all U; in order to obtain a continuous
function on D? which can be locally represented as a projection on
coordinate axis in a neighborhood of every point of ©.

Let us consider two types of domains.

Case 1: Let Uj, C © be a domain such that OU, contains only
one boundary arc a C 9D? and 9U}, \ a = 3, where 3 C o(F).

It is clear that the set 3 is connected therefore there exists the
tree T; C F such that 8 C ¢(7;). From Lemma 4.1.3 it follows
that f‘ﬁ =9, = const. Let f(8) =¢ € R.

Let us consider the arc o and the preimage ¢~ (@) C 7 and
denote by 3’ and y” the endpoints of an arc a. Then v/ = p~1(y/)
and v = o~ !(y") belong to the set V(T;) N V(7). The vertices v
and v” can not be adjacent vertices of the cycle v since they belong
the same tree T; of F. Therefore v' and v” are non comparable, see
Definition 4.1.1 and Condition A2. Thus the set ¢~ !(a) contains
at least one vertex of the graph G except v’ and v”. It is obvious
that the arc o can not contain images of vertices of F' besides its
endpoints ' and y”. Therefore from A3 it follows that the arc
a\{y,y"} contains an image of exactly one vertex y = ¢(v) of
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degree 2. From Lemma 4.1.3 it follows that f has a local extremum
in the point y and the arc o\ {¢/, 4"} does not contain another
local extrema of f. Suppose that f(y) = c¢. Points v and v’ are
comparable since ¢ # ¢;.

Denote by o and o subarcs of the arc a. Suppose that the
first of them connects points ¢ and y and the second connects y
and y”. From the above discussion it follows that f is monotone on
both arc ¢ and . Thus maps ¢’ : ¢/ — [0,1], " : & — [0, 1],

R —f) f2) e
V=R ) T e
w//(z): f(z)_f(y) :f(z)_c

fW—fly)  c—c’
are homeomorphisms, in addition, ¢'(y) = ¢¥"(y) = 0, ¥'(¢/) =
V) =1

Figure 4.1: Function on a simple connected domain with one
boundary arc.

Let us consider a set P = {(z,y) € [0,1]2 | y > z} and a map
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Lp:P—R

Li: (z,y) = c(l—y) +cy.
It is obvious that L;(0,0) = c = f(y), Lk([0,1] x {1}) = ¢;.
The arc 3 is obviously homeomorphic to segment. Let ¢ : 3 —
[0,1] be a homeomorphism such that (y") = 0, ¥ (y") = 1. We
consider a map (Y : OUy — oP,

(0,9'(2)), for z € o/,
HOE (W’( ),¥"(2)), forz€a”,
(Y(2),1), for z € 3.

It is easy to show that {2 is homeomorphism. Both the sets
dUj, and P are simple closed curves thus we can use Schoenflies’s
theorem [26] and extend the homeomorphism (Y to ¢ : Uy, — P.

Let us consider a continuous function, see Fig. 4.1

Ju, = LgoCe:Up — R.

It is obvious that this function locally can be represented as a
projection on coordinate axis in all points of U \ {y,v,v"} .

Let us prove that fy, =f | Indeed, for any z € 8 we
U, oUg

fu,(2) = Ly o Ge(2) = Li(¥(2),1) = ¢; = f(2);

for z € o/ the following relations hold true

have

fu(2) = Lr(0,¢/(2)) = c(1 = 9(2)) + i/ (2) =

:Cz_f(z>c+f(z)_cccz:f(z)7

Ci —C C; —

similarly, for z € o/ we have

fuu(2) = Li(y" (2),9"(2)) = e(1 = ¥"(2)) + et)"(2) = f(2) -
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Case 2: Let U C © be a domain such that U}, contains two
boundary arcs oy, ag C dD? and U}, \ (o U ag) = By U (B, where
Bi C(F),i=1,2.

The set Uy, \ (81 U B2) divides a disk D? hence arcs 41 and (s
do not belong to the image of the same tree of F. Suppose that
B1 C o(Ty), B2 C @(Tj), i # j.

It is obvious that any arc oy, as does not contain other images
of vertices of F' besides its endpoints. By using A3 we can conclude
that the only images of vertices of G that are contained in a; and
oy are their endpoints. Let us denote by y,s, r,s € {1,2}, a
common endpoint of «, and ;.

From Lemma 4.1.3 it follows that f(81) = ¢(Ti) = ¢ € R,
f(B2) = g(Tj) = ¢;j € R, and f has no local extrema on arcs
ar \ {yr1,yr2}, v € {1,2}. Therefore ¢; # ¢; and maps 91 : a1 —
[0,1], 2 : ag — [0, 1],

)= flyn) _ fle)—a
fly2) = flynn)  ¢j—c
f2) = flyn) _ flz) -
fly2e) = flyn)  ¢j—ci

are homeomorphisms, moreover ¥ (y11) = ¥2(y21) = 0, ¥1(y12) =

Ya(y2e) = 1.
We consider a set P =1[0,1] x [0,1] and a map Ly : P — R,

P1(2) =

Pa(2) =

Ly : (z,y) — (1 —y) +¢jy.

Let ns : Bs — [0, 1] be homeomorphisms such that 7s(y1s) = 0,

ns(y2s) = 1, s € {1,2}. R
Let us consider a map Cg : 00U, — OP,

(0,41(2)), forz € aq,

0 _ (1,¢2(2))7 for z € a2,
C(2) = (m(z),0), forzepfy,
(772(2)¢1)7 for z € B2 .
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1 Cj
L
P § R
0 1 C;
\Z/lz B2 Y22
Qk a2 f Uy
aq

Y11 B Y21

Figure 4.2: Function on a connected domain with two boundary
arcs.

It is easy to see that C,g is homeomorphism. By using Schoenflies’s
theorem [26] we can extend the homeomorphism ¢p to a homeo-
morphism (j : Uy — P.

Let us consider a continuous function, see Fig. 4.2

fu, =LgoG:Ur— R.

It is evident that this function locally can be represented as a
projection on coordinate axis in all points of U \{y11, y12, Y21, Y22}
By analogy with case 1, we prove that fy,

=f .
o, lou

The union of {U}} generates a finite closed cover of D?. In
addition, it follows from the construction that if z € U, N U for
some k # s then z € (G) and fy, (2) = fu,(2) = f(z). Therefore
we can extend a function f from the set ¢(G) into D? with the
help of the following relation

f(z) = fu,(z), forze U .
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The cover {U}} is fundamental thus the function f : D? — R is
continuous.

G will be indentified with its image ¢(G) € D? in the following
discussion.

Let T}, be a tree of F'. Let us denote by ©f an union of domains
of © = D?\ p(F) which are adjoined to T.

m(k)
k

7=1
Ut Uhuy = {U; Ul }
IEERER] m(k) = FIRERER ]m(k) .

It should be noted that for any domain U; and arc a = T, NOU;
we have in the first place f(a) = const = ¢, secondly, either
f(z) > ¢ for any z € U; or f(z) < ¢ for any z € U;. Thus every
domain Uj’»“, jeA{l,...,m(k)} of © can be associated with sign
either “+” or “—” depending on the sign of difference f(z) — cx,
zeU Jk.

It is easy to see that arcs of 9D? connecting the images of adja-
cent vertices of G are connected components of the set Iy = (N
0D?) \ p(V*). Therefore from Definition 4.1.1 and Lemma 4.1.3
it follows that f is monotone on any arc of I'y. By definition of
I', and A3 exactly one of endpoints of any arc of 'y is an image
of vertex of tree Ty. Thus every arc S of I'y can be associated
with a sign either “4” or “—” depending on the sign of difference
f(z)—cp, z€ 8.

Let us prove that in a neighborhood of any vertex ¢(v), where
v € Vi C T, the signs of domains, whose boundaries are the
images of edges adjacent to v alternate. We should remark that
for every vertex v of Vie,(T)) this follows from A3.

Let ¢(v) be a vertex such that v € Vi \ Vier(Tk). Suppose
that in a neighborhood of some point of e,,\V (G) there exist two
domains U, and U,,+1 which are adjoint to the edge e, (which
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is adjacent to v) such that they have the same sign. Then from
A2 it follows that there exist an other edge e, that is adjacent to
v and both of its adjoining domains U,, and U,y have the same
sign, cases Un+1 = Uy, Up, = Up41 are not excluded. Since for an
edge e, (en) there exist one more vertex v] (v{) which is adjacent
to it then by analogy for the vertex v} (v}) we can find a vertex v}
(v4) such that it has two adjacent edges adjoining to domains with
the same sign and so on. Tree is finite, so for sequence of vertices
vV, vy, .., vy (0,07, 0h, ..., v)) there exists a vertex v, (v],)
such that v}, € V;* (vl, € V).
We consider two types of vertices from V' \ Vier(Tk).

(i) if deg(vg,) = 2k+1 > 3, then a number of domains adjoining
to the edges which are incident to it is even.

Let us consider the following binary relation p on the set of such
domains. We will say that V/pV” if domains V' and V" adjoin to
a common edge e which is incident to vertex v}, and going around
v}, across the edge e in positive direction we pass from V' to V.

It is easy to show that the relation p is convenient and all
domains generate p-chain, where its first and last elements are

domains whose boundary contain arcs S’, S” C I'} adjoining to
/

-
1 From A3 it follows that arcs S’ and S” have different signs
therefore first and last element of p-chain have the different signs.

From this and the fact that p-chain has even number of ele-
ments it follows that a number of its pairs of adjacent elements
which have the same sign is even. We can apply our previous ar-
gument and add one more vertex v ,, to the sequence of vertices

/ /
Uy Upy ey Vg,

v

(i) if deg(v},) = 2k > 3, then a number of domains adjoining
to edges which are adjacent to it is odd.

Just as in (i) we consider the relation p on the set of such
domains and order them into p-chain.
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Contrary to the previous case a length of p-chain is odd and
by Condition A3 first and last its elements have the same sign.
Similarly, in this case a number of pairs of adjacent elements of
p-chain which have the same signs is even. Therefore we can add

/ : / /
one more vertex v, ,; to the sequence of vertices v, vy, ... s Vg, -

From the finiteness of tree it follows that there exists a vertex
v' (v") such that v/ € Vi, (Tg) (v € Vier(Tk)) and an edge which
is incident to it adjoins to domains with the same signs. Thus
arcs ) and S, with the endpoint ' (v") have the same sign but it
contradicts to A3.

Let us consider the restriction of f to 0D?. Local extrema of f
are points (v;) corresponding to vertices v; such that v; € v and
deg(v;) = 2k, see Lemma 4.1.3. From the finiteness of G follows
the finiteness of number of local extrema on 9D?.

O

Let G be A—graph. From Theorem 4.2.1 it follows that there is
a pseudoharmonic function f on disk which corresponds to a graph
G. But, in general this function is not uniquely defined since we
in no way restrict the choice of a monotone map g : G — R. Thus
for non comparable vertices v’ and v” of graph G the relation
g(v") = g(v") is not necessarily valid.

It is easy to construct an example of A—graph G and two mono-
tone maps g1, g2 : G — R which satisfy Lemma 4.1.3 but for some
pair of non comparable vertices v, v" € V(G) the following corre-
lations hold true g1 (v') < ¢g1(v”) and ga2(v") > g2(v").

Theorem 4.2.2. Let a graph G be A—graph.

G satisfies Condition A4 iff a strict partial order of a graph
G coincides with a strict partial order of a diagram P(f) of some
pseudoharmonic function f that corresponds to G.

Proof. Let P(f) be a combinatorial diagram of some pseudohar-
monic function f. We remind that a partial order on vertices of
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P(f) is induced by a function f with the help of the following
relation

ol <" i fop(v) < foyp(W), W e V(P(f)).
We note that vertices v’ and v” are non comparable iff their images
are on the same level set of f. Hence a graph P(f) satisfies A4.

Suppose that G satisfies A4. The binary relation “to be non
comparable” on the set of vertices V(G) of G is transitive, symmet-
ric and reflexive. So, in the proof of Lemma 4.1.3 we can consider
instead of f a partition f whose elements are classes of non com-
parable elements with regards to the order on V(G). Then due
to condition A4 the projection 7 : V(G) — V(G)/f induces a re-
lation of partial order on quotient space V = V(G)/f such that
every pair of elements ¥, 9" € V is comparable. Therefore the
partially ordered space V is linearly ordered and every monotone
map § : V — R is isomorphism onto its image. A map g = jo 7
satisfies the condition that any pair of vertices v/, v” € V(G) is
non comparable iff g(v') = g(v").

In the same way as in Lemma 4.1.3 we extend the function g on
G and use this extension to construct a pseudoharmonic function
f-. By the construction the partial order induced on V(G) by f is
the same as the original partial order on V(G). O
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