Properties of changing orientation homeomorphisms of the disk

Iryna Kuznietsova, Sergiy Maksymenko

(Department of Algebra and Topology, Institute of Mathematics of NAS of Ukraine, Tereshchenkivska str. 3, Kyiv, 01024, Ukraine) *E-mail:* kuznietsova@imath.kiev.ua, maks@imath.kiev.ua

Denote by D^2 2-dimensional disk. We will call a cell complex regularly embedded in D^2 if it is a subcomplex of a triangulation of D^2 .

Theorem 1. Let K be a finite connected one-dimensional cell complex regularly embedded in the interior of D^2 and K^0 be the set of all vertices of K. Suppose there exists a homeomorphism $h: D^2 \to D^2$ reversing the orientation of D^2 such that h(K) = K and $h(K^0) = K^0$. Then h^2 preserves every vertex of K fixed and leaves every edge (open 1-cell) of K invariant with preserved orientation.

Denote by $\mathcal{D}(D^2)$ the group of C^{∞} -diffeomorphisms of D^2 . There is a natural right action of the group $\mathcal{D}(D^2)$ on the space of smooth functions $C^{\infty}(D^2, \mathbb{R})$ defined by the following rule: $(h, f) \mapsto f \circ h$, where $h \in \mathcal{D}(D^2)$, $f \in C^{\infty}(D^2, \mathbb{R})$.

Thus, the *stabilizer* of f with respect to the action

$$\mathcal{S}(f) = \{ h \in \mathcal{D}(D^2) \mid f \circ h = f \}$$

consists of f-preserving diffeomorphisms of D^2 .

Endow the space $\mathcal{D}(D^2)$ with Whitney C^{∞} -topology and its subspace $\mathcal{S}(f)$ with the induced one. Denote by $\mathcal{S}_{id}(f)$ the identity path component of $\mathcal{S}(f)$.

Theorem 2. Let $f: D^2 \to \mathbb{R}$ be a Morse function. Suppose there exists $h \in S(f)$ changing the orientation of D^2 . Then exists diffeomorphism $g \in S(f)$ such that

- g = h on a neighborhood of ∂D^2 ,
- $g^2 \in \mathcal{S}_{\mathrm{id}}(f)$.

References

 S. I. Maksymenko, Homotopy types of stabilizers and orbits of Morse functions on surfaces, Ann. Global Anal. Geom. 29 (2006), no. 3, 241–285. MR MR2248072 (2007k:57067)