Unique solvability of the nonlocal problem with integral condition for nonhomogeneous differential equations of second order

Grzegorz Kuduk

(Faculty of Mathematical of Nature Scientes University of Rzeszow, Poland Graduate of University of Rzeszow)

E-mail: gkuduk@onet.eu

Let $H(([T_1, T_2] \cup [T_3, T_4]) \times \mathbb{R}_+)$ be a class of entirie function, $K_{L,M}$ be a class of quasi-polynomials of the form $f(t, x) = \sum_{i=1}^{n} \sum_{j=1}^{m} Q_{ij}(t, x) \exp[\alpha_i x + \beta_j t]$, where $Q_{ij}(t, x)$ are given polynomials, $L \subseteq \mathbb{C}$, $M \subseteq \mathbb{C} \ \alpha_i \in L, \ \alpha_k \neq \alpha_l$, for $k \neq l, \ \beta_j \in M, \ \beta_k \neq \beta_l$, for $k \neq l$.

Each quasi-polynomial defines a differential operator $f\left(\frac{\partial}{\partial\lambda}, \frac{\partial}{\partial\nu}\right)$ of finite order on the class of certain

function, in the form

$$\sum_{i=1}^{m} \sum_{j=1}^{m} Q_{ji} \left(\frac{\partial}{\partial \lambda}, \frac{\partial}{\partial \nu} \right) \exp \left[\alpha_{i} \frac{\partial}{\partial \lambda} + \beta_{j} \frac{\partial}{\partial \nu} \right] \Big|_{\lambda=0,\nu=0}$$

In the strip $\Omega = \{(t, x) \in \mathbb{R}^2 : t \in (T_1, T_2) \cup (T_1, T_2), x \in \mathbb{R}_+\}$ we consider of the problem with integral conditios

$$\left[\frac{\partial^2}{\partial t^2} + a\left(\frac{\partial}{\partial x}\right)\frac{\partial}{\partial t} + b\left(\frac{\partial}{\partial x}\right)\right]U(t,x) = f(t,x),\tag{1}$$

satysfies nonlocal-integral conditions

$$\int_{T_1}^{T_2} U(t,x)dt + \int_{T_3}^{T_4} U(t,x)dt = 0; \quad t \in [T_1, T_2] \cup [T_3, T_4]), \tag{2}$$

$$\int_{T_1}^{T_2} tU(t,x)dt + \int_{T_3}^{T_4} tU(t,x)dt = 0;$$
(3)

where $a\left(\frac{\partial}{\partial x}\right)$, $b\left(\frac{\partial}{\partial x}\right)$ are differential expressions with entire functions $a(\lambda), b(\lambda) \neq const$.

Solution of the problem (1), (2), (3) according to the differential-symbol method [1] is represented in the form

$$U(t,x) = f\left(\frac{\partial}{\partial\nu}, \frac{\partial}{\partial\lambda}\right) \left\{ G(t,\nu,\lambda) \exp[\lambda x] \right\} \bigg|_{\lambda = \nu = 0}$$

where $G(t, \nu, \lambda)$ is a solution of the problem:

$$\begin{bmatrix} \frac{d^2}{dt^2} + a(\lambda)\frac{d}{dt} + b(\lambda) \end{bmatrix} G(t,\nu,\lambda) = \exp[\nu t],$$
$$\int_{T_1}^{T_2} G(t,\nu,\lambda) + \int_{T_3}^{T_4} G(t,\nu,\lambda) = 0,$$
$$\int_{T_1}^{T_2} tG(t,\nu,\lambda) + \int_{T_3}^{T_4} tG(t,\nu,\lambda) = 0.$$

This problem is a continuos works [2, 3].

References

- [1] P. I. Kalenyuk, Z. M. Nytrebych, Generalized Scheme of Separation of Variables. Differential-Symbol Method. Publishing House of Lviv Polytechnic National University, 2002. 292Z. p. (in Ukrainian).
- [2] P. I. Kalenyuk, Z. M. Nytrebych, I. V. Kohut, G. Kuduk, Problem for nonhomogeneous second order evolution equation with homogeneous integral conditions, Math. Methods and Phys.- Mech. Polia. Vol. 58, no. 1. P. 7–19(2015).
- [3] P. I. Kalenyuk, G. Kuduk, I. V. Kohut, and Z. M. Nytrebych, Problem with integral conditiond for differentialoperator equation. J. Math. Sci. Vol. 208, No. 3, 267–276(2015).