Enumeration of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional torus

Kadubovs'kyi O. A.

(Donbas State Pedagogical University, Slovians'k, Ukraine) *E-mail:* kadubovs@ukr.net

Let $(N, \partial N)$ be a smooth surface with the edge ∂N (∂N can be empty). Let $C^{\infty}(N)$ denote the space of infinitely differentiable functions on N with edge $\partial N = \partial_{-}N \cup \partial_{+}N$, all critical points of which are isolated and lie in the interior of N, and, furthermore, on the connected components of the edge $\partial_{-}N$ ($\partial_{+}N$) the functions from $C^{\infty}(N)$ take the same values a (b accordingly).

Two functions f_1 and f_2 from the space $C^{\infty}(N)$ are called topologically equivalent if there are homeomorphisms $h: N \to N$ and $h': R^1 \to R^1$ (h' preserves orientation) such that $f_2 = h' \circ f_1 \circ h^{-1}$. If h preserves of the orientation, the functions f_1 and f_2 are called topologically conjugated (eg. [4]) or O-topologically equivalent (eg. [6]).

It is known [4] that a function $f \in C^{\infty}(N)$, in a certain neighborhood of its isolated critical point $x \in N$ (which is not a local extremum) for which the topological type of level lines changes in passing through x, is reduced by a continuous change of coordinates to the form $f = \text{Re}z^n + c$, $n \geq 2$ (are called ijessentially i critical point) or f = Rez if the topological type of level lines does not change in passing through x. The number of essentially critical points x_i of the function f, together with the values of n_i (exponents in there presentation $f = \text{Re}z^{n_i} + c_i$ in the neighborhoods of the critical points x_i), are called the topological singular type of the function f.

The problem of the topological equivalence of functions from the class $C^{\infty}(N)$ with the fixed number of critical points was completely solved by V.V. Sharko in [5] and it was established that a finite number of topologically nonequivalent functions of this class exist. However, it should be noted that the task about calculation of topologically non-equivalent functions with the fixed topological singular type is rather complicated and is still **unsolved**.

When considering functions from the class $C(M_g) \subset C^{\infty}(N)$ that possess **only one** essentially critical point x_0 (degenerate critical point of the saddle type) in addition to local maxima and minima on oriented surface M_g of genus $g \ge 0$, then the problem of counting the number of such nonequivalent functions is greatly simplified. It is well known [4] that $\forall f \in C(M_g)$ the Poincare index of a critical point x_0 , is equal $\operatorname{ind}^f(x_0) = 1 - n$, where $n = 2g - 1 + \lambda$ and λ is a total number of local maxima and minima.

Let $C_n(M_g)$ be a class of functions from $C(M_g)$ which, in addition to local maxima and minima, have only one essentially critical point, whose the Poincare index is equal (1 - n). Denote the class of functions from $C(M_g)$ that possess one essentially critical point, k local maxima and l local minima by $C_{k,l}(M_g)$. Then it is clear that $\forall f \in C_{k,l}(M_g)$ n = 2g - 1 + k + l.

In the general case, for natural g, k, l (or k, l, and n = 2g + k + l - 1), the problem of calculating the number of topologically non-equivalent functions from the class $C_{k,l}(M_g)$ also has proved to be quite a difficult and unsolved problem to date.

The task of calculating the number of topologically non-equivalent functions from the class $C_{1,1}(M_g)$ (for genus $g \ge 1$) was completely solved in [6]. The exact formulas established in [2] solve completely the tasks of calculating the number of O-topologically non-equivalent and the number of topologically non-equivalent functions from the class $C_n(M_0)$. In [7], for natural k and l solved completely the problems of calculating the numbers O-topologically and topologically non-equivalent functions from the class $C_{k,l}(M_0)$ (on two-dimensional sphere). For two-dimensional torus T^2 the problems of the enumeration of O-topologically and of topologically non-equivalent functions are solved only for class $C_{1,l}(T^2)$, $C_{2,l}(T^2)$ and $C_{3,l}(T^2)$ in [8, 9, 10] accordingly. In general case, for fixed natural k and l, the task is also still unsolved.

By using the results of [1] and [3], we can establish the validity of the following statement

Theorem 1. For the natural $n \ge 3$ the number of O-topologically non-equivalent functions from the class $C_n(T^2)$ can be calculated by the relations

$$t^*(n) = \frac{1}{n} \left(t(n) + a(n) + 2b\left(\frac{2n}{3}\right) + 2c\left(\frac{n}{2}\right) + 2d\left(\frac{n}{3}\right) \right), \tag{1}$$

where

$$t(n) = \frac{1}{6}C_{n-1}^{2}C_{2(n-1)}^{n-1}, \qquad u(p) = \frac{(2p)!}{p!p!} = C_{2p}^{p};$$

$$a(2p+1) = 0, \qquad a(2p) = \frac{1}{6}p(p-1) \cdot C_{2p}^{p} = \frac{1}{6}p(p-1) \cdot u(p);$$

$$b(2p+1) = 0, \qquad b(2p) = (2p-1) \cdot C_{2(p-1)}^{p-1} = (2p-1) \cdot u(p-1);$$

$$c(2p+1) = d(2p+1) = 0, \qquad c(2p) = d(2p) = p \cdot C_{2p}^{p} = p \cdot u(p).$$
(2)

By using the results of [8, 9, 10], we have the following values

	$(k;l) \\ k, l \in N, k+l=n-1$								$t^*(n) = \sum_{k+l=n-1} t^*_{k,l}$
n	(1; n-2)	(2; n - 3)	(3; n-4)	(4; n-5)	(5; n-6)	(6; n-7)	(7; n - 8)	(8; n-9)	
3	1								1
4	2	2			—		—		4
5	3	8	3						14
6	7	31	31	7					76
7	10	80	150	80	10				330
8	17	187	557	557	187	17			1 522
9	24	374	1 634	2 616	1 634	374	24		6 680
10	34	698	4 172	9 724	9 724	4 172	698	34	29 256

TABLE 1.1. Number $t_{k,l}^*$ of O-topologically non-equivalent functions from the class $C_{k,l}(T^2)$

References

- [1] Adrianov N.M. An analog of the Harer–Zagier formula for unicellular bicolored maps. Functional Analysis and Its Applications, 31(3): 1–9, 1997. (in Russian)
- [2] Callan D., Smiley L. Noncrossing partitions under reflection and rotation; preprint, arXiv:math/0510447, 2000.
- [3] Cori R., Marcus M. Counting non-isomorphic chord diagrams. Theoretical Computer Science, 204: 55–73, 1998.
- [4] Prishlyak A.O. Topological equivalence of smooth functions with isolated critical points on a cloused surface. *Topology* and its Applications, 119(3): 257–267, 2002.
- [5] Sharko V.V. Smooth and Topological Equivalence of Functions on Surfaces. Ukrainian Mathematical Journal, 55(5): 687–700, 2003. (in Russian)
- [6] Kadubovs'kyi O.A. Enumeration of topologically non-equivalent smooth minimal functions on a closed surfaces. Zbirnyk Prats' Institutu Matematyky NAN Ukrainy, 12(6): 105–145, 2015. (in Ukrainian)
- [7] Kadubovskyi A.A. Enumeration of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II. *Proceedings of the International Geometry Center*, 8(1): 46–61, 2015. (in Russian)
- [8] Kadubovs'kyi O.A., Balyasa N.P. Enumeration of 2-color chord O-diagrams of the genus one that have one black (or grey) face under rotation and reflection. Zbirnik naukovih prac' fiziko-matematicnogo fakul'tetu DDPU, 6: 31–46, 2016. (in Ukrainian)

- [9] Kadubovs'kyi O.A., Kalinichenko Y.V. Enumeration of 2-color chord O-diagrams of the genus one that have two grey (or black) faces under rotation and reflection. Zbirnik naukovih prac' fiziko-matematicnogo fakul'tetu DDPU, 8: 30-45, 2018. (in Ukrainian)
- [10] Kadubovs'kyi O.A. Enumeration of 2-color chord O-diagrams of the genus one that have three grey (or black) faces under rotation and reflection. Zbirnik naukovih prac' fiziko-mat. fakul'tetu DDPU, 9: 25–41, 2019. (in Ukrainian)