Matrix manifolds as affine varieties

Marek Golasiński

(Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Sloneczna 54 Street, 10-710 Olsztyn, Poland)

E-mail: marekg@matman.uwm.edu.pl

Francisco Gómez Ruiz

(Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, España)

E-mail: gomez_ruiz@uma.es

Let $\mathbb{K} = \mathbb{R}, \mathbb{C}$ or \mathbb{H} , the skew \mathbb{R} -algebra of quaternions and write $M_{n,r}(\mathbb{K})$ (resp. $M_n(\mathbb{K})$) for the set of $n \times r$ (resp. $n \times n$) -matrices over \mathbb{K} . We aim to examine the structure of special matrix manifolds, Grassmann $G_{n,r}(\mathbb{K})$ and Stiefel manifolds $V_{n,r}(\mathbb{K})$, via their presentations as algebraic sets.

Proposition 1. Let $\mathbb{K} = \mathbb{R}, \mathbb{C}$ or \mathbb{H} . Then:

(1) $G_{n,r}(\mathbb{K}) = \{A \in M_n(\mathbb{K}); A^2 = A, \bar{A}^t = A, \operatorname{tr}(A) = r\}.$

(2) $V_{n,r}(\mathbb{K}) = \{A \in M_{n,r}(\mathbb{K}); \bar{A}^t A = I_r\}.$

This implies that $G_{n,r}(\mathbb{K})$ and $V_{n,r}(\mathbb{K})$ are \mathbb{R} -affine varieties. The main result is:

Theorem 2. (1) The tangent bundle $TG_{n,r}(\mathbb{K}) = \{(A, B) \in G_{n,r}(\mathbb{K}) \times M_n(\mathbb{K}); \overline{B}^t = B, AB + BA = B\};$

(2) There is an algebraic isomorphism $TG_{n,r}(\mathbb{K}) \approx \operatorname{Idem}_{r,n}(\mathbb{K})$, where $\operatorname{Idem}_{r,n}(\mathbb{K}) = \{A \in M_n(\mathbb{K}); A^2 = A, \operatorname{rk}(A) = r\};$

(3) The \mathbb{C} -Zariski closure $\overline{G_{n,r}(\mathbb{C})} = TG_{n,r}(\mathbb{C})$ for $G_{n,r}(\mathbb{C})$ as an \mathbb{R} -affine variety.

Ì

Remark 3. The Stiefel map $V_{n,r}(\mathbb{K}) \to G_{n,r}(\mathbb{K})$ given by $A \mapsto A\overline{A}^t$ for $A \in V_{n,r}(\mathbb{K})$ lead to a purely algebraic construction of the universal map

$$EU(\mathbb{K}) \longrightarrow BU(\mathbb{K}).$$

Remark 4. An extension of those results on some matrix manifolds over \mathbb{K} being the Cayley algebra, and more generally, a composition algebra is planed as well.