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Let M be a smooth compact surface. The group of diffeomorphisms D(M) naturally acts from the
right on the space of smooth functions C∞(M) by the following rule: γ : C∞(M)×D(M)→ C∞(M),
γ(f, h) = f ◦h. For the given smooth function f ∈ C∞(M) we denote by S(f) and O(f) the stabilizer
and the orbit of f with respect to the action γ. Endow strong Whitney topologies on C∞(M)
and D(M); these topologies induce some topologies on O(f) and S(f). We denote by Did(M) and
Of (f) connected components of D(M) and O(f) which contain id and f respectively; we also set
S ′(f) = S(f) ∩ Did(M).

Let Γf be a Kronrod-Reeb graph of a smooth function f . It is easy to see that each h ∈ S ′(f)
induces an automorphism ρ(h) of the graph Γf , and the correspondence ρ : S ′(f) → Aut(Γf ) is a
homeomorphism. The image of ρ(S ′(f)) in Aut(Γf ) will be denoted by G(f). More details can be
found in [6].

In the series of papers [1]–[5] S. Maksymenko and the author described an algebraic structure of
π1Of (f) for Morse functions on 2-torus. In my talk I am going to present algebraic structures of
groups π0S ′(f) and G(f) for Morse functions on 2-torus.
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