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We investigate the problem of constructing solutions z(t) ∈ C1[a, b] of the nonlinear differential
algebraic system [1, 2, 3]

A(t)z′(t) = B(t)z(t) + f(t) + Z(z, t). (1)

Here A(t), B(t) ∈ Cm×n[a, b] is a continuous matrices, f(t) ∈ C[a, b] is a continuous vector. We
consider a nonlinear function Z(z, t) that assume twice continuously differentiable by z in a certain
region Ω ⊆ Rn and continuous in t ∈ [a, b]. We call the equilibrium position of the system (1) a
function z(t) ∈ C1[a, b], that satisfies two conditions A(t)z′ = 0, B(t)z + f(t) + Z(z, t) = 0. In the
simplest case, under the condition B(t) ≡ B, f(t) ≡ f − const, Z(z, t) ≡ Z(z), the equilibrium
position z(t) ≡ z − const of a nonlinear differential-algebraic system (1) defines the equation

ϕ(z) := B z + f + Z(z) = 0. (2)

To solve the equation (2), we apply the Newton method [4, 5].

Lemma 1. Assume that the following conditions are satisfied for the equation (2):

(1) The nonlinear vector function ϕ(z) in the neighborhood Ω of the point z0, has the root z∗ ∈ Rn.
(2) In the indicated neighborhood of the zeroth approximation z0 the inequalities∣∣∣∣∣∣∣∣J+
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}
are satisfied.

Then under the conditions

PJ∗
k

= 0, Jk := ϕ′(zk) ∈ Rm×n, θ · |z∗ − z0| < 1

an iterative scheme
zk+1 = zk − J+

k ϕ(zk)

is applicable to find the solution z∗ of the equation (2).
The vector function z∗ is the equilibrium position of the differential algebraic system (1).
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