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We investigate the problem of constructing solutions z(t) € C![a,b] of the nonlinear differential
algebraic system [1, 2, 3]
A(t)Z'(t) = B(t)z(t) + f(t) + Z(z,t). (1)
Here A(t), B(t) € Cpxnla,b] is a continuous matrices, f(t) € Cla,b] is a continuous vector. We
consider a nonlinear function Z(z,t) that assume twice continuously differentiable by z in a certain
region 2 C R™ and continuous in ¢ € [a,b]. We call the equilibrium position of the system (1) a
function z(t) € C'[a,b], that satisfies two conditions A(t)z’ = 0, B(t)z + f(t) + Z(z,t) = 0. In the
simplest case, under the condition B(t) = B, f(t) = f — const, Z(z,t) = Z(z), the equilibrium
position z(t) = z — const of a nonlinear differential-algebraic system (1) defines the equation
p(z):=Bz+ f+Z(z) =0. (2)

To solve the equation (2), we apply the Newton method [4, 5].

Lemma 1. Assume that the following conditions are satisfied for the equation (2):

(1) The nonlinear vector function ¢(z) in the neighborhood Q2 of the point zgy, has the root z* € R™.
(2) In the indicated neighborhood of the zeroth approxzimation zy the inequalities
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Then under the conditions
PJ; =0, Jp:= gO’(Zk) S Rmxn, 0 - |Z>|< — ZQ| <1
an iterative scheme
zir1 = 2k — I o(2k)
is applicable to find the solution z* of the equation (2).
The vector function z* is the equilibrium position of the differential algebraic system (1).
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