Structure of commutant and centralizer, minimal generating sets of Sylow 2-subgroups Syl_2A_n of alternating and symmetric groups

Ruslan Skuratovskii (Kiev, MAUP) *E-mail:* ruslcomp@mail.ru

Let $Syl_2A_{2^k}$ and Syl_2A_n be Sylow 2-subgroups of corresponding alternating groups A_{2^k} and A_n . We find a least generating set and a structure for such subgroups $Syl_2A_{2^k}$ and Syl_2A_n . The aim of this investigation is to research the structure of a commutant and a centralizer of Syl_2A_n and Syl_2S_n and find numbers of minimal generating sets for $Syl_2S_{2^k}$ and Syl_2A_n . Let us denote by $X^{[k]}$ a regular truncated binary rooted tree with number of levels from 0 to k, where $X = \{0, 1\}$. The set $X^n \subset X^*$ is called the n-th level of the tree X^* and $X^0 = \{v_0\}$. For every automorphism $g \in AutX^*$ and every word $v \in X^*$ define the section (state) $g_{(v)} \in AutX^*$ of g at v by the rule: $g_{(v)}(x) = y$ for $x, y \in X^*$ if and only if g(vx) = g(v)y. The restriction of the action of an automorphism $g \in AutX^*$ to the subtree $X^{[l]}$ is denoted by $g_{(v)}|_{X^{[l]}}$. A restriction $g_{(v)}|_{X^{[1]}}$ is called the vertex permutation (v.p.) of g in a vertex v. The vertex of X^j having the number i we denote by $v_{j,i}$ also we denote by $v_{j,i}X^{[k-j]}$ the subtree of $X^{[k]}$ with a root in $v_{j,i}$. Let β belongs to full automorphism group $AutX^{[k]}$ of $X^{[k]}$.

Definition 1. Let us call the index of an automorphism β on X^l a number of no trivial v.p. of β on X^l .

Definition 2. Define a element of type T as an automorphism $\tau_{i_0,\ldots,i_{2k-1};j_{2k-1},\ldots,j_{2k}}$, that has even index at X^{k-1} and it has exactly m active states, $m < 2^{k-2}$, in vertexes $v_{k-1,j}$ with number $1 \leq j \leq 2^{k-2}$ and m active states in vertices $v_{k-1,j}$, $2^{k-2} < j \leq 2^{k-1}$. Set of such elements is denoted by T.

Let $n = 2^{k_0} + 2^{k_1} + \ldots + 2^{k_m}$, where $0 \le k_0 < k_1 < \ldots < k_m$ and $m \ge 0$. Also recall that $Syl_2S_n = Syl_2S_{2^{k_0}} \times \ldots \times Syl_2S_{2^{k_m}}$.

Theorem 3. A maximal 2-subgroup of $AutX^{[k]}$ acting by even permutations on X^k has the structure of the semidirect product $G_k \simeq \underset{i=1}{\overset{k-1}{\underset{i=1}{\underset{i=1}{\overset{k-1}{\underset{i=1}{\overset{k-1}{\underset{i=1}{\overset{k-1}{\underset{i=1}{\underset{i=1}{\overset{k-1}{\underset{i=1}{\underset{i=1}{\overset{k-1}{\underset{i=1}{\underset{i=1}{\overset{k-1}{\underset{i=1}{\underset{i=1}{\overset{k-1}{\underset{i=1}{\underset{i=1}{\overset{k-1}{\underset{i=1}{\underset{i=1}{\overset{k-1}{\underset{i=1}{\underset{i=1}{\overset{k-1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{k-1}{\underset{i=1}{\underset{i$

An automorphisms group of the subgroup $C_2^{2^{k-1}-1}$ is based on permutations of copies of C_2 . Orders of $\underset{i=1}{\overset{k-1}{\underset{i=1}{\wr}} C_2$ and $C_2^{2^{k-1}-1}$ are equals. A homomorphism from $\underset{i=1}{\overset{k-1}{\underset{i=1}{\wr}} C_2$ into $Aut(C_2^{2^{k-1}-1})$ is injective because a kernel of action $\underset{i=1}{\overset{k-1}{\underset{i=1}{\wr}} C_2$ on $C_2^{2^{k-1}-1}$ is trivial. The group G_k is a proper subgroup of index 2 in the group $\underset{i=1}{\overset{k}{\underset{i=1}{\wr}} C_2$ [6].

Theorem 4. The centralizer of $Syl_2S_{2^{k_i}}$ with $k_i > 2$, in Syl_2S_n is isomorphic to $Syl_2Syl_2S_n/Syl_2S_{2^{k_i}} \times Z(Syl_2S_{2^{k_i}})$.

Theorem 5. The centralizer of $Syl_2A_{2^{k_i}}$ with $k_i > 2$, in Syl_2A_n is isomorphic to $Syl_2A_n/Syl_2A_{2^{k_i}} \times Z(Syl_2A_{2^{k_i}})$.

We will call **diagonal base** [1], [2] (S_d) for $Syl_2S_{2^k} \simeq AutX^{[k]}$ a generating set where every *j*-th generator has odd number of non trivial v.p. on X^j and it has only trivial v.p. on other levels. A number of such tuple with odd number of no trivial v.p. that can be on X^j equals to 2^{2^j-1} .

There is minimum one permutation of type T [1] in S_d for $Syl_2A_{2^k}$. It can be chosen in $(2^{n-2})^2$ ways. Thus, general cardinality of S_d for $Syl_2A_{2^k}$ is $2^{2^{k-1}-k-2}(2^{n-2})^2$. Hence, it can be applied [3]. As a result, we have $2^{k(2^k-k-1)} \cdot (2^k-1)(2^k-2)(2^k-2^2)...(2^k-2^{k-1})$ bases for $Syl_2S_{2^k}$.

Lemma 6. Commutators of all elements from $Syl_2A_{2^k}$ have all possible even indexes on X^l , l < k-1 of $X^{[k]}$ and on X^{k-2} of subtrees $v_{11}X^{[k-1]}$ and $v_{12}X^{[k-1]}$.

Theorem 7. The set of all commutators K of Sylow 2-subgroup $Syl_2A_{2^k}$ of the alternating group A_n is the commutant of $Syl_2A_{2^k}$.

Proposition 8. Frattini subgroup $\phi(G_k)$ acts by all even permutations on X^l , $1 \le l \le k-1$ and any element of $\phi(G_k)$ has arbitrary even indexes on X^{k-2} of subtrees $v_{11}X^{[k-1]}$ and $v_{12}X^{[k-1]}$ [1]. Also $\phi(G_k) = (G_k)'$.

Lemma 9. A quotient group ${}^{G_k}/{}_{G_k^2G_k'}$ is isomorphic to $\underbrace{C_2 \times C_2 \times \ldots \times C_2}_k$.

Theorem 10. A minimal generating set for a group $Syl_2A_{2^k}$ consists of k elements.

Example 11. For example, a minimal set of generators for $Syl_2(A_8)$ may be constructed by following way, for convenience let us consider the next set:

Let $n = 2^{k_0} + 2^{k_1} + \dots + 2^{k_m}$, where $0 \le k_0 < k_1 < \dots < k_m$ and $m \ge 0$.

Theorem 12. Any minimal set of generators for Syl_2A_n has $\sum_{i=0}^m k_i - 1$ generators, if m > 0, and it has k_0 generators, if m = 0. For instance if n = 4k+2, then Syl_2A_n has $k_1 + k_2 + \ldots + k_m$ generators.

Example 13. Minimal generating set for Syl_2A_{28} has 8 elements: (25, 27)(26, 28), (23, 24)(25, 26), (17, 21)(18, 22)(19, 23)(20, 24), (17, 19)(18, 20), (15, 16)(17, 18), (1, 9)(2, 10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)(8, 16), (1, 5)(2, 6)(3, 7)(4, 8), (1, 3)(2, 4).

References

- [1] R. V. Skuratovskii Structure and minimal generating sets of Sylow 2-subgroups of alternating groups. Source: https://arxiv.org/pdf/1702.05784.pdf, 2017.
- [2] B. Pawlik, The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs. Vol. 21 of Algebra and Discrete Mathematics. N. 2, pp. 264-281., 2016.
- [3] A.G. Myasnikov, V. Shpilrain, A. Ushakov, A practical attack on some braid group based cryptographic protocols, Crypto Springer Lect., Notes Comp. Sc. 3621, pp. 86-96, 2005.
- [4] Skuratovskii R. V. Corepresentation of a Sylow *p*-subgroup of a group S_n . Cybernetics and systems analysis, volume 1, (2009), pp. 27-41.
- [5] Y. A. Drozd, R. V. Skuratovskii. Generators and relations for wreath products. vol. 60., of Ukr. Math. J., No. 7, pp. 1168-1171. 2008.
- [6] Skuratovskii R. V. Generators and relations of Sylow p-subgroups of symmetric groups S_n . Naukovi visti KPI, pp. 93-101. 2014.