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On the algorithm of degenerations and fundamental groups
as a tool to understand algebraic surfaces

Meirav Amram

(Shamoon College of Engineering, Ashdod, Israel)
E-mail: meiravt@sce.ac.il

The classi�cation of algebraic surfaces in the moduli space has been an interesting question for
many years. Fundamental groups are very nice invariants in classi�cation of algebraic surfaces.

We consider an algebraic surface X in some projective space. We project X onto the projective
plane CP2, using a generic projection, and get the branch curve S in CP2. The curve S is a
cuspidal curve with nodes and branch points, and it can tell a lot about X. We can get the
presentation of the fundamental group G of the complement of S in CP2. Group G does not
change when the complex structure of X changes continuously. In fact, all surfaces in the same
component of the moduli space have the same homotopy type and therefore have the same group
G.

But it is di�cult to describe S explicitly, and therefore it is not easy to write down a presentation
for G. To tackle this problem, we use a nice degeneration and regeneration algorithm. And
together with the use of some regeneration rules and the van-Kampen Theorem, we get the
presentation of G. We note that despite these techniques, we still cannot skip some algebraic
work in order to determine what G is.

If G is too complicated, we can calculate its quotient, which is the fundamental group GGal

of the Galois cover of X, and also this quotient does not change when the complex structure
of X changes continuously. Some examples of such calculations appear in [1] and [2]. In [1] we
prove that surfaces with Zappatic singularity of type Rk have a trivial GGal. And in [2] we divide
surfaces with degree 6 degenerations to two sets: trivial or non-trivial GGal. Moreover, some
other works were done in this research domain, for example for surfaces with di�erent Zappatic
singularities, and surfaces that degenerate to non-planar shapes.

In the end of the talk I will present an output of a new computer algorithm, developed jointly
with U. Sinichkin (TAU, Israel). This algorithm provides the presentation of the fundamental
group G, when the branch curve S is given.
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Foliations on closed three-dimensional Riemannian
manifolds with a bounded mean curvature of leaves

Dmitry V. Bolotov

(B. Verkin ILTPE of NASU, 47 Nauky Ave., Kharkiv, 61103, Ukraine)
E-mail: bolotov@ilt.kharkov.ua

Recall that a foliation F of codimension one on a smooth 3-manifold M is called taut if its
leaves are minimal submanifolds of M for some Riemannian metric on M . In [1] it was proved
that if F is taut, then a number of cohomological classes H2(M) realized as Euler classes e(F)
of the tangent distribution to F is �nite.
We present the following result.

Theorem 1. Let M be a smooth closed three-dimensional orientable irreducible Riemannian
manifold. Then, for any �xed constant H0 > 0, there are only �nitely many cohomological classes
of the group H2(M) that can be realized by the Euler class of a two-dimensional transversely
oriented foliation whose leaves have a modulus of mean curvature bounded above by the constant
H0.
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Topological issues about the 6D ISST in Physics

Enzo Bonacci

(The Physics Unit of ATINER, Athens, Greece)
E-mail: enzo.bonacci@physics.org

The recent proposals of a three-directional time [6], of a time vector [7], and of a 6D spacetime
with SO(3,3) symmetry [5], have renewed the interest for the hexadimensional extension of Ein-
stein's General Relativity formulated two decades ago via three-dimensional time [1, 2, 3]. We
wish to enrich the discussion about the hypothetical 6D geometrodynamics by giving a topolog-
ical response to two fundamental questions: 1) Why should the spacetime manifold require six
dimensions instead of four? 2) Why should the two extradimensions be timelike? The 4D universe
is supported by an intuitive logic: in order to describe an event, we need to know where and when
it is occurring, for a total amount of four coordinates (three spatial and one temporal). Although
reasonable, the current representation of the spacetime's intimate structure could be incomplete:
we suggest adding the spin angular velocity among its intrinsic properties. If we assume that
each point of the continuum is a structureless rotating sphere of null radius, we obtain a 6D in-
herently spinning spacetime (acronym ISST). In the ISSTconstruction, we choose to neglect both
the spinning magnitude and its direction (up or down), focusing only on the plane of rotation
(perpendicular to the spinning axis) as essential information about how an event happens. The
two parameters de�ning the orientation of the rotation plane of a spinning point are interpreted
as time extradimensions because they are surely not spacelike (i.e., not related to the position
in a �xed Oxyz reference frame) and, as surface measures, they are basically timelike [4]. Our
geometric analysis raises open questions ranging from the observation of a preferential arrow of
time to the role of temporal �hidden variables" in classic quantum phenomena.
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Characterized cycles integration on D-modules as solutions
in L-holomorphic bundles

Francisco Bulnes

(IINAMEI A.C., Research Department in Mathematics and Engineering, TESCHA, Mexico.)
E-mail: francisco.bulnes@tesch.edu.mx

From a moduli space developed to establish the equivalences between di�erent characteristic
cycles classes; where some are objects of a complex holomorphic bundle and others elements
of a sheaf of coherent D-modules, are determined co-cycles that represent solutions of the �eld
equations in the holomorphic context and Lagrangian submanifolds. The characteristic cycles
of the category of Lagrangian submanifolds are solutions to the �eld equation on L-holomorphic
bundles in the space-time M (as complex Riemannian manifold) with singularities. We have the
following technical lemma:

Lemma 1 (F. Bulnes). Characteristic cycles in C(G), as Lagrangians have their equivalent in a

�at space Pn+4d, (corresponding to the spertwistor space PT), as lines bundles in P̃. The cycles
in C(G), are solutions of the �eld equation on L-holomorphic bundles to the space-time M, which
includes singularities.
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One-dimensional Monotone Non-autonomous Dynamical
Systems and Strange Nonchaotic Attractors

David Cheban

(Moldova State University)
E-mail: david.ceban@usm.md

This work is devoted to the study of the dynamics of one-dimensional monotone non-autonomous
(cocycle) dynamical systems and strange nonchaotic attractors. A description of the structure
of their invariant sets, omega limit sets, Bohr/Levitan almost periodic and almost automorphic
motions, global attractors, pinched and minimal sets is given. An application of our general
results is given to scalar di�erential and di�erence equations. Below we give some of our results
for discrete dynamical systems generated by scalar di�erence equations.
Below we will use the terminology and notation from [1]. Let (Y, d) be a complete metric space

and (Y,Z, σ) be a dynamical system on the space Y and C(Z×Y,R) be the space of all continuous
functions f : Z× Y → R equipped with the compact-open topology.
Consider the scalar di�erence equation

u(t+ 1) = f(σ(t, y), u), (y ∈ Y ) (1)

where f ∈ C(Y × Z,R). Denote by ϕ(t, u, y) a unique solution of equation (1) passing through
the point u ∈ R at the initial moment t = 0.
From the general properties of solutions of equation (1) we have

a. ϕ(0, u, y) = u for any u ∈ R and y ∈ Y ;
b. ϕ(t+ τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for any t, τ ∈ Z+, u ∈ R and y ∈ Y ;
c. the mapping (t, u, y)→ ϕ(t, u, y) from Z+ × R× Y → R is continuous;
d. if the function f is monotonically increasing in u ∈ R uniformly with respect to y ∈ Y ,

then one has ϕ(t, u1, y) ≤ ϕ(t, u2, y) for any t ∈ Z+ and y ∈ Y .
Taking in consideration a. − b. we can conclude that every equation (1) with monotonically

increasing right hand side f generates a monotone cocycle 〈R,ϕ, (Y,T, σ)〉 with discrete time Z+.
Quasi-periodically forced monotone maps. An m-dimensional torus is denoted by T m :=

Rm/2πZm. Let (T m,T, σ) be an irrational winding of T m with the frequency ν = (ν1, ν2, . . . , νm) ∈
Rm. Consider di�erence equation

u(t+ 1) = f(σ(t, ω), u), (2)

where f ∈ C(T m × R,R), ω ∈ T m and (T m,T, σ) is an irrational winding of T m with the
frequency ν = (ν1, ν2, . . . , νm) ∈ Rm. Denote by ϕ(t, u, ω) the unique solution of equation (2)
passing through the point u ∈ R ate the initial moment t = 0. If the function f is monotonically
increasing in u ∈ R uniformly with respect to ω ∈ T m, then the mapping ϕ : Z+ ×R× T m → R
((t, u, ω)→ ϕ(t, u, ω)) possesses the properties a.− d.
Theorem 1. Let f ∈ C(Z× R,R). Assume that the following conditions hold:

(1) there exist a solution ϕ(t, u0, f) of equation

x′ = f(t, x) (3)

bounded on Z+;
(2) the function f is strongly Poisson stable in t ∈ Z uniformly with respect to u on every

compact subset of R.
Then the following statements hold:
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(1) the ω-limit set ωx0 (x0 := (u0, f) ∈ R × H(f)) of point x0 is a nonempty, conditionally
compact and invariant set of skew-product dynamical system (X,Z+, π);

(2) h(ωx0) = Y := H(f);
(3) the set ωx0 contains at least one but at most two minimal sets;
(4) ifM⊆ ωx0 is a minimal set, then every point x = (u, f) ∈M is strongly Poisson stable;
(5) if the function f is almost recurrent (respectively, recurrent) in t ∈ Z uniformly with

respect to u on every compact subset of R andM⊆ ωx0 is a minimal set, then every point
x = (u, f) ∈M is almost recurrent (respectively, recurrent);

(6) if the function f is almost automorphic in t ∈ Z uniformly with respect to u on every
compact subset of R, then the minimal setM⊆ ωx0 is almost automorphic.

Theorem 2. Assume that equation (3) is uniformly dissipative, then the following statements
hold:

(1) the cocycle 〈R, ϕ, (H(f),Z, σ)〉 associated by equation (3) admits a compact global attractor
[2] I = {Ig| g ∈ H(f)};

(2) α(g), β(g) ∈ Ig, and hence, Ig ⊆ [α(g), β(g)], where

α(g) := inf{u ∈ Ig} and β(g) := sup{u ∈ Ig};
(3) the scalar function β : H(f) → R, g → β(g) (respectively, α : H(f) → R, g → α(g)) is

upper semi-continuous (respectively, lower semi-continuous);
(4)

ϕ(t, α(g), g) = α(σ(t, g)) (4)
(respectively,

ϕ(t, β(g), g) = β(σ(t, g)) ) (5)
for any t ∈ Z and g ∈ H(f);

(5) if the function f is strictly Poisson stable in t ∈ Z uniformly with respect to u on every
compact subset of R, then there exists a residual subset G ⊆ H(f) such that for any g ∈ G
the solution ϕ(t, α(g), g) (respectively, ϕ(t, β(g), g)) of equation

x′ = g(t, x) (g ∈ G ⊆ H(f)) (6)

is compatible;
(6) Ig = [α(g), β(g)] for any g ∈ H(f).

Remark 3. Suppose that α(g0) = β(g0) for some g0 ∈ H(f). Then α(g) = β(g) for a residual
set G ⊆ H(f) of g ∈ G. This type of attractors are called Strange Nonchaotic Attractors (see,
for example, [3, Ch.I] and the bibliography therein).
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Holomorphically Projective Mappings of K�ahler Manifolds
Preserving The Generalized Einstein Tensor

Yevhen Cherevko

(Department of Physics and Mathematics Sciences, Odesa National University of Technology
112, Kanatnaya Str., 65039, Odesa, Ukraine)

E-mail: cherevko@usa.com

Vladimir Berezovski

(Department of Mathematics and Physics, Uman National University of Horticulture 1,
Institutskaya, 20300, Uman, Ukraine)
E-mail: berez.volod@gmail.com

Josef Mike�s

(Department of Algebra and Geometry, Faculty of Science, Palack�y University Olomouc
K�r�i�rkovsk�eho 511/8, CZ-771 47 Olomouc, Czech Republic)

E-mail: josef.mikes@upol.cz

Yuliya Fedchenko

(Department of Physics and Mathematics Sciences, Odesa National University of Technology
112, Kanatnaya Str., 65039, Odesa, Ukraine)

E-mail: fedchenko_julia@ukr.net

Holomorphically projective mappings which preserved the Einstein tensor

Eij = Rij −
Rgij
n

were studied in [1]. Preserving the stress-energy tensor

Sij = Rij −
Rgij

2

by conformal mappings was explored in [3], [5]. It's worth for noting that in many classical issues
e. g. [2, p. 359], just the latter is referred to as the Einstein tensor.
Let us refer to

Eij
def
= Rij − κRgij. (1)

as the generalized Einstein tensor. Here κ is a constant. Conformal mappings which pre-
serving the introduced tensor were explored in [6].
It is known that a covariant vector ψi determining holomorphically projective mapping between

two K�ahler spaces (V n, J, g) and (V
n
, J, g) should satisfy the equations

ψi,j = ψiψj − ψαJαi ψβJβj +
1

n+ 2
(Rij −Rij). (2)

Here we denote by comma ′′,′′ covariant derivative respect to the metric g of a space (V n, J, g).
The a�nor Jhi is referred to as a complex structure. The structure is the same for both manifolds.
The symbols Rij and Rij denote Ricci tensors of spaces (V n, J, g) and (V

n
, J, g) respectively.

It follows from (38) that the deformation of the generalized Einstein tensor can be written as

Eij − Eij = Rij − κRgij −Rij + κRgij. (3)

Taking account of the preservation requirement, i. e. Eij = Eij, from (38) we get

Rij −Rij = κRgij − κRgij. (4)
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Since (38) holds we can rewrite (38) as

ψi,j = ψiψj − ψαJαi ψβJβj +
κ

n+ 2
(Rgij −Rgij). (5)

Let us recall that R = Rijg
ij.

Di�erentiating (38) covariantly with respect to xk and the connection Γ which is compatible
with the metric g of the manifold (V n, J, g), alternating in j and k and using the Ricci identity,
we obtain the conditions of integrability:

ψαW
α
ijk =

κ

n+ 2
(∂kRgij − ∂jRgik − ∂kRgij + ∂jRgik), (6)

where

W h
ijk

def
= Rh

ijk +
κR

n+ 2
(δhj gik − δhkgij − Jhj Jik + Jhk Jij − 2Jhi Jjk). (7)

Finally, we can summarize by the theorem

Theorem 1. If manifolds (V n, J, g) and (V
n
, J, g) are in holomorphically projective correspon-

dence and the mapping preserves the tensor Eij = Rij−κRgij, then the function ψ generating the
mapping, must satisfy the system of PDE's (38) whose conditions of integrability are (38). Also,
the tensor W h

ijk is preserved by the mapping.
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Some questions about virtual Legendrian knots

Vladimir Chernov

(Dartmouth College, Hanover, USA)
E-mail: vladimir.chernov@dartmouth.edu

Rustam Sadykov

(Kansas State University)
E-mail: rstsdk@gmail.com

Virtual Legendrian knots were introduced by Cahn and Levi and jointly with Sadykov we
proved the Kuperberg type theorem for them. We will discuss a few open questions about the
virtual Legendrian knots including the versions of the Ding-Geiges Theorem, Arnolds 4 cusp
conjecture and the applications of this to causality in spacetimes with the changing topology of
the spacelike section in the spirit of our works with Nemirovski.
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Morse-Smale �ows in the Boy's surface

Luca Di Beo

(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)
E-mail: dibeoluca@gmail.com

Morse-Smale (MS) dynamical systems are amongst the simplest possible dynamical systems,
with strong restrictions imposed on its critical points. In this thesis, I present a brief history of
the development of the theory, along with the introduction of important de�nitions, theorems
and lemmas. Moreover, I investigate MS systems in the Boy's surface (P`) with emphasis on
optimal ones. A method relying only on topological features has been used in order to classify
MS systems in P`. A review of some topological properties of this space is presented in order to
construct the necessary arguments that allowed the discovery of this type of �ow in P`.
At the time this thesis was written, there was no current work in the literature regarding the

classi�cation of all optimal MS �ows in P`. Hence, my original contribution to knowledge here is
the �nding of all 342 optimal MS �ows in P`, the �nding of all 80 optimal Projective MS (PMS)
�ows (Projective MS �ows in P`are those MS �ows in P`that can be extended to MS �ow in RP 2)
in P`, and the exposure of a few non-optimal ones, as a preparatory path for future researchers,
all up to symmetry.
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Morita equivalence of non-commutative Noetherian schemes

Yuriy Drozd

(Institute of Mathematics NASU)
E-mail: y.a.drozd@gmail.com

This is a joint work with Igor Burban, see [1].
The classical Morita theorem (see, for instance, [3, Ch. 18]) claims that the categories of modules

over rings A and B are equivalent if and only if there is a �nitely generated projective generator
P of the category of right A-modules such that EndA P ' B. Then this equivalence is established
by the functor P ⊗A −. If A and B are Noetherian, the same is the criterion of equivalence of
their categories of �nitely generated modules. On the other hand, Gabriel [2] proved that two
Noetherian schemes X and Y are isomorphic if and only if the categories of coherent (or, which
is the same, of quasi-coherent) sheaves of OX- and OY -modules are equivalent. We present here
a result which is, in some sense, a combination and generalization of these two classical theorems.

De�nition 1. (1) A non-commutative Noetherian scheme (NCNS ) is a pair X = (X,OX),
where X is a separated Noetherian scheme and OX is a sheaf of OX-algebras which is
coherent as a sheaf of OX-modules. We denote by CohX and QCohX respectively the
categories of coherent and quasi-coherent sheaves of left OX-modules.
Note that the category QCohX is locally Noetherian and CohX is its subcategory of
Noetherian objects. Therefore, they uniquely de�ne each other.

(2) Two NCNS X and Y are called Morita equivalent if the categories CohX and CohY (or,
which is the same, QCohX and QCohY) are equivalent.

(3) A NCNS X is called central if OX coincides with the center of OX, i.e. for every point
x ∈ X the ring OX,x is the center of the algebra OX,x.

Proposition 2. For every NCNS X = (X,OX) there is a Noetherian scheme Z and a morphism

φ : Z → X such that the NCNS X̃ = (Z, φ∗OX) is central and Morita equivalent to X. Moreover,
the ring of global sections Γ(Z,OZ) is isomorphic to the center of the category CohX, i.e. the
endomorphism ring of the identity functor idCohX. If the scheme X is excellent, the morphism φ
is �nite.

Thus, studying Morita equivalence, we can only consider central schemes. The following result
is an analogue of the Gabriel's theorem.

Theorem 3. If a NCNS X = (X,OX) is central, the scheme X is determined by the category
QCohX (or, which is the same, by CohX) up to an isomorphism.

Actually, we give an explicit construction that restores X from QCohX, namely, from the so
called spectrum of this category in the sense of Gabriel [2], i.e. isomorphism classes of indecom-
posable injective objects. It is important that this construction also recovers a�ne open coverings
of X.

De�nition 4. A coherent sheaf of right OX-modules P is called a local progenerator for X if for
every point x ∈ X its stalk Px is a projective generator of the category of right OX,x-modules.

Our main result if the following.

Theorem 5. Let X = (X,OX) and Y = (Y,OY) be central NCNS. They are Morita equivalent
if and only if there is an isomorphism φ : Y → X and a local progenerator P for X such that
φ∗(EndOX P) ' OY. Then this equivalence is established by the functor φ∗(P ⊗OX −).
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Note that even if X = Y , the isomorphism φ need not be identity. If it is so, this equivalence
is called central.
We also specialize this theorem for the case of non-commutative curves, where it gives a sort of

�globalization� of the known results on the local�global correspondence from the theory of lattices
over orders (or integral representations of rings).

De�nition 6. A non-commutative curve is a NCNS X = (X,OX) such that X is excellent and
of pure dimension 1 and OX is reduced, i.e. contains no nilpotent ideals.

We always suppose X central and connected (in the central case, it just means that X is
connected). We denote by QX the sheaf of fractions of OX and set QX = QX⊗OX

OX. We denote
Q(X) = Γ(X,QX) and Q(X) = Γ(X,QX). Note that Q(X) is a semisimple Q(X)-algebra and for
every closed point x ∈ X the ring OX,x is an OX,x-order in this algebra. Since X is excellent, the
set Sing(X) of such closed points x ∈ X that this order is not maximal is �nite (it follows from
[4, Ch. 6]).

Theorem 7. Let X = (X,OX) and Y = (X,OY)) be two central non-commutative curves with the
same central curve X. They are centrally Morita equivalent if and only if the following conditions
are satis�ed:

• the semisimple Q(X)-algebras Q(X) and Q(Y) are centrally Morita equivalent;
• Sing(X) = Sing(Y);
• for every x ∈ Sing(X) the OX,x-orders OX,x and OY,x (or, which is the same, their mx-
completions) are centrally Morita equivalent.
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Some critical point results for Fr�echet manifolds

Kaveh Eftekharinasab

(Institute of Mathematics of NAS of Ukraine)
E-mail: kaveh@imath.kiev.ua

Linking techniques (see [1]) provide signi�cant results in critical points theory. We present
linking theorem and some of its corollaries, namely a mountain pass theorem and a three crit-
ical points theorem for Keller C1-functional on C1-Fr�echet manifolds. We refer to [2] for the
de�nitions.

Theorem 1 (Linking Theorem, [2]). Let M be a C1- Fr�echet manifold endowed with a complete
Finsler metric ρ and let ϕ : M → R be a closed Keller C1

c -functional. Suppose {S0, S, C} is
a linking set through γ ∈ C(S0,T), C is closed and ρ(γ(S0), C) > 0. Suppose the following
conditions hold

(1) s :− supγ(S0) ≤ infC ϕ −: i,
(2) ϕ satis�es the Palais-Smale condition at

c :− inf
h∈H

sup
x∈S

ϕ(γ(x)), (1)

where H :− {h ∈ C(S,T) : h|∂S0 = γ}.
Then c is a critical value and c ≥ i. Furthermore, if c = i then Cr(ϕ, c) ∩ C 6= ∅.
The theorem yields the following corollaries:

Theorem 2 (Mountain Pass Theorem, [2]). Suppose that x0, x1 ∈ M , x0 belongs to an open
subset U ⊂ M and x1 /∈ U . Let ϕ : M → R be a closed a Keller C1

c -functional satisfying the
following condition:

(1) max{ϕ(x0), ϕ(x1)} ≤ inf∂U ϕ(x) :− i;
(2) ϕ satis�es the Palais-Smale condition at

c :− inf
h∈C

sup
t∈[0,1]

ϕ(h(t)), (2)

where C :− {h ∈ C([0, 1],M) : h(0) = x0, h(1) = x1}.
Then c is a critical value and c ≥ i. If c = i then Cr(ϕ, c) ∩ U 6= ∅.
Theorem 3 (Three Critical Points Theorem, [2]). Let M be a connected Fr�echet manifold and
ϕ : M → R a closed a Keller C1

c -functional satisfying the Palais-Smale condition at all levels. If
ϕ has two minima, then ϕ has one more critical point.

We apply the mountain pass theorem and the Minimax principle to prove the following theorem
which provides the su�cient conditions for a local di�eomorphism to be a global one.

Theorem 4. [2] Let M,N be connected C1- Fr�echet manifolds endowed with complete Finsler
metrics δ, ρ respectively. Assume that ϕ : M → N is a local di�eomorphism of class Keller C1

c .
Let I : N → [0,∞] be a closed Keller C1

c -functional such that I(x) = 0 if and only if x = 0 and
I ′(x) = 0 if and only if x = 0. If for any q ∈ N the functional φq de�ned by

φq(x) = I(ϕ(x)− q)
satis�es the Palais-Smale condition at all levels, then ϕ is a Keller C1

c -global di�eomorphism.
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A solution of many problems of the geometry, theoretical physics, astrophysics, di�erential
equations, nonlinear elasticity, �uid dynamics, optimal mass transportation, one-dimensional gas
dynamics and etc. has reduced to investigation of classes of Monge-Amp�ere equations in the
spaces of di�erent dimensions and di�erent types. At the present time, there are a lot of papers
and books in which those classes have been studied by di�erent methods.
Let us consider the following class of (1 + 3)-dimensional Monge-Amp�ere equations:

det (uµν) = F (x0, x1, x2, x3, u, u0, u1, u2, u3) ,

where u = u(x), x = (x0, x1, x2, x3) ∈M(1, 3), uµν ≡
∂2u

∂xµ∂xν
, uα ≡

∂u

∂xα
, µ, ν, α = 0, 1, 2, 3.

Here, M(1, 3) is a four-dimensional Minkowski space, F is an arbitrary real smooth function.
For the group classi�cation of this class we have used the classical Lie-Ovsiannikov approach.

At the present time, we have performed partial preliminary group classi�cation of the class under
consideration, using one-dimensional nonconjugate Galilean subalgebras of the Lie algebra of the
Poincar�e group P (1, 4).
In my report, I plan to present some of the results obtained concerning with partial preliminary

group classi�cation of the class under consideration.
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On packing and lattice packing of Minkowski-Chebyshev
balls
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The Minkowski hypothesis was formulated in [1] and re�ned in [2, 3, 4]. Regarding the concepts
of the geometry of numbers, see [5].
Let

Dp = {(x, y), p > 1} ⊂ R2 (1)

be the 2-dimension region:
|x|p + |y|p < 1. (2)

Let
∆(p, σ) = (τ + σ)(1 + τ p)−

1
p (1 + σp)−

1
p , (3)

be the function de�ned in the domain

M : ∞ > p > 1, 1 ≤ σ ≤ σp = (2p − 1)
1
p , (4)

of the {p, σ} plane, where σ is some real parameter; here τ = τ(p, σ) is the function uniquely
determined by the conditions

Ap +Bp = 1, 0 ≤ τ ≤ τp,

where
A = A(p, σ) = (1 + τ p)−

1
p − (1 + σp)−

1
p , (5)

B = B(p, σ) = σ(1 + σp)−
1
p τ(1 + τ p)−

1
p , (6)

τp is de�ned by the equation

2(1− τp)p = 1 + τ pp , 0 ≤ τp ≤ 1. (7)

Proposition 1. The function ∆(p, σ) in region M determines the moduli space of admissiblel
lattices of the rigion Dp each of which contains three pairs of points on the boundary of Dp.

Proposition 2. Let ∆(Dp) be the critical determinant of the region |x|p + |y|p < 1. Let Λ
(0)
p and

Λ
(1)
p be two Dp-admissible lattices each of which contains three pairs of points on the boundary

of Dp and with the property that (1, 0) ∈ Λ
(0)
p , (−2−1/p, 2−1/p) ∈ Λ

(1)
p . Under these conditions the

lattices are uniquely de�ned.

Let d(Λ
(0)
p ), d(Λ

(1)
p ) be determinants of the lattices. Let ∆

(1)
p = ∆(p, 1) = 4−

1
p

1+τp
1−τp , ∆

(0)
p =

∆(p, σp) = 1
2
σp.

Proposition 3. d(Λ
(0)
p ) = ∆(p, σp), d(Λ

(1)
p ) = ∆(p, 1).

Remark 4. For example in the case p = 2 the lattice Λ
(0)
2 has the determinant d(Λ

(0)
2 ) =

√
3

2
and

is de�ned by generators a1 = (1, 0), a2 = (1
2
,
√

3
2

).



19

Theorem 5. [6]

∆(Dp) =

{
∆(p, 1), 1 < p ≤ 2, p ≥ p0,
∆(p, σp), 2 ≤ p ≤ p0;

here p0 is a real number that is de�ned unique by conditions ∆(p0, σp) = ∆(p0, 1), 2, 57 ≤ p0 ≤
2, 58.

De�nition 6. In two-dimensional case we will call geometric �gures of the form |x|p + |y|p ≤
R,R > 0, with p ≥ p0 the two-dimensional Minkowski-Chebyshev balls.
In cases of dimension grater then two, when the constant p0 is unknown, we will call geometric
�gures of the form |x1|p + |x2|p + |x3|p + · · · + |xn|p ≤ R,R > 0, the n-dimensional Minkowski-
Chebyshev balls if p is a su�ciently large.

We investigate packing and lattice packing by equal Minkowski-Chebyshev balls of n-dimensional
Euclidean spaces and also of corresponding spheres.

Proposition 7. Let Z2 be the integer lattice in R2 with a point in the origin. Then the density
of packing by two-dimensional open Minkowski-Chebyshev balls over the lattice Z2 tends to unity
as p tends to in�nity

Conjecture 8. Let Λ be the integer (n > 2)-dimensional lattice in Rn with a point in the origin.
Then the density of packing by n-dimensional open Minkowski-Chebyshev balls over the lattice Λ
tends to unity as p tends to in�nity

Problem 9. Is there an analogue of Theorem 5 in the case of geometric bodies of the form

|x1|p + |x2|p + |x3|p + · · ·+ |xn|p < 1, n > 2,

.

Problem 10. If there exists an analogue of Theorem 5 in the case of geometric bodies of the
form

|x1|p + |x2|p + |x3|p + · · ·+ |xn|p < 1, n > 2,

what is the value of the constant p0 .
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Let X be a Banach space. An operator T : X → X is said to be demicompact if, for every
bounded sequence (xn) in X such that (xn − Txn) converges to x ∈ X, there is a convergent
subsequence of (xn). For example, each compact operator is demicompact. But, the converse
is not true in general. If the identity operator I : X → X on the in�nite dimensional Banach
space X, then −I is demicompact but it is not compact. We say that an operator T : X → X
is weakly demicompact if, for every bounded sequence (xn) in X such that (xn − Txn) weakly
converges in X, there is a weakly convergent subsequence of (xn). Every demicompact operator is
weakly demicompact. An operator T : X → Y between Banach spaces is called Dunford-Pettis if
it carries weakly compact subsets of X onto compact subsets of Y . Equivalently, for each weakly
null sequence (xn) we have ‖Txn‖ → 0 as n→∞. An operator T : X → X is called unbounded
demi Dunford-Pettis if, for every sequence (xn) in X such that xn → 0 in σ(X,X ′) and (xn−Txn)
unbounded norm converges to 0 as n→∞, we have (xn) unbounded norm convergent to 0. For
example, for the identity operator I : l∞ → l∞, −I is unbounded demi Dunford-Pettis operator.

Theorem 1. Let E be a Banach lattice. Every Dunford-Pettis operator T : E → E is unbounded
demi Dunford-Pettis.

In this study, we characterize the operators on Banach lattices that under which conditions
they satisfy unbounded demicompactness property.
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An explicit formula for the A-polynomial of the knot with Conway's notation C(2n, 4) up to
repeated factors is presented.

The main purpose of the paper is to �nd the explicit formula for the A-polynomial of the knot
with Conway's notation C(2n, 4) up to repeated factors. Let us denote the knot with Conway's
notation C(2n, 4) by T2n and the A-polynomial of the knot with Conway's notation C(2n, 4) by
A2n. The following theorem gives the explicit formula for the A-polynomial of T2n.

Theorem 1. The A-polynomial A2n = A2n(L,M) is given explicitly by

A2n = p2n(u)p2n(−u)

where

p2n(z) =





∑2n
i=0

(b i
2c+n
i

)
2−2b i+1

2 c−i (M2)
−b i

2c−2b i+1
2 c+i+n (LM2 + 1)

−2b i+1
2 c−i+2n

× (−2LM6 + LM4 − LM2 −M4 +M2z +M2 − 2)b
i+1
2 c

× (LM2 + L+M2 + z + 1)
i
(−3LM2 + L+M2 + z − 3)b

i−1
2 c

× ((−1)i+1 (LM2 + 1)− 2LM2 + L+M2 + z − 2) if n ≥ 0,
∑−2n

i=0

(b i−1
2 c−n
i

)
2−2b i+1

2 c−i (M2)
−b i

2c−2b i+1
2 c+i−n (LM2 + 1)

− 1
2
−2b i+1

2 c−i−2n

× (−2LM6 + LM4 − LM2 −M4 +M2z +M2 − 2)b
i+1
2 c

× (LM2 + L+M2 + z + 1)
i
(−3LM2 + L+M2 + z − 3)b

i−1
2 c

× ((−1)i (−2LM2 + L+M2 + z − 2)− LM2 − 1) if n < 0,

and

u =
√

5L2M4 − 2L2M2 + L2 − 2LM4 + 12LM2 − 2L+M4 − 2M2 + 5.

s
t

s
t

Figure 1.1. A two bridge knot with Conway's notation C(2n, 4) for n > 0 (left)
and for n < 0 (right)
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The symplectic invariants of 3-webs
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The classical web geometry ([1],[2],[4]) studies invariants of foliation families with respect to
pseudogroup of di�eomorphisms. Thus for the case of planar 3-webs the basic semi invariant is
the Blaschke curvature ([3]). It is also curvature of the Chern connection ([4]) that are naturally
associated with a planar 3-web.
Let D ⊂ R2 be a connected and simply connected domain in the plane, equipped with sym-

plectic structure given by di�erential 2-form Ω = dx ∧ dy in the standard coordinates on the
plane.
Remind that a 3-web in the domain is a family of three foliations being in general position.

We'll assume that these foliations are integral curves of di�erential 1-forms ωi, i = 1, 2, 3, and
write

W3 = 〈ω1, ω2, ω3〉 ,
where ωi ∈ Ω1 (D) are such di�erential 1-forms that ωi ∧ ωj 6= 0 in D, if i 6= j.

De�nition 1. We say that two planar 3-websW3 and W̃3 given in domains D and D̃ respectively
are symplectively equivalent if there is a symplectomorphism φ : D→ D̃, such that φ (W3) = W̃3.

Proposition 2. Let W3 = 〈ω1, ω2, ω3〉 and W̃3 = 〈ω̃1, ω̃2, ω̃3〉 be two planar 3-webs in domains D

and D̃ respectively given by normalized

ω1 + ω2 + ω3 = 0. (1)

di�erential forms. Then a di�eomorphism φ : D → D̃ establishes a symplectic equivalence of
3-webs if and only if

φ∗ (ω̃i) = εωσ(i),

where (σ, ε) ∈ A3 × Z2, and A3 ⊂ S3 is the subgroup of even permutations and Z2 = {1,−1}.
In our case normalization (1) and the above proposition shows that the Chern form γ is itself

symplectic invariant of 3-webs.
Let's write down γ in following form

γ = x1ω1 + x2ω2 + x3ω3,

where functions xi ∈ C∞ (D) are barycentric coordinates of γ, i.e.

x1 + x2 + x3 = 1.

Then we have

dω1 = (x3 − x2)ω1 ∧ ω2,

dω2 = (x1 − x3)ω1 ∧ ω2,

dω3 = (x2 − x1)ω1 ∧ ω2.

Using the second normalization (1) condition we'll rewrite these relations in the following form

dωi = λiΩ, i = 1, 2, 3, (2)

λ1 = x3 − x2, λ2 = x1 − x3, λ3 = x2 − x1,
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and

x1 =
1

3
(1 + λ2 − λ3) , x2 =

1

3
(1 + λ3 − λ1) , x3 =

1

3
(1 + λ1 − λ2) .

Theorem 3. Functions

J1 = λ2
1 + λ2

2 + λ2
3,

J2 = λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3,

Jw =
(
λ2

2 − λ2
1

) (
λ2

3 − λ2
1

) (
λ2

3 − λ2
2

)

J3 = λ2
1λ

2
2λ

2
3

are symplectic invariants of 3-webs.
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Solutions to Mumford's second problem on theta functions
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In his book Tata Lectures on Theta Mumford asks whether there is a systematic way to derive
relations between theta functions of rational characteristics and their derivatives. We solve this
problem using the residue theorem. ( Joint work with Julia Bernatska)
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LetM be a compact connected surface and P is a real line R or a circle S1. Denote by F(M,P )
the space of smooth functions f ∈ C∞(M,P ) satisfying the following conditions:

1) the function f takes constant value at ∂M and has no critical point in ∂M ;
2) for every critical point z of f there is a local presentation fz : R2 → R of f near z such

that fz is a homogeneous polynomial R2 → R without multiple factors.

Let X be a closed subset ofM . Denote by D(M,X) the group of C∞-di�eomorphisms ofM �xed
on X, that acts on the space of smooth functions C∞(M,P ) by the rule: (f, h) 7−→ f ◦ h, where
h ∈ D(M,X), f ∈ C∞(M,P ).
The subset S(f,X) = {h ∈ D(M,X) | f ◦ h = f} is called the stabilizer of f with respect to

the action above and O(f,X) = {f ◦ h |h ∈ D(M,X) is orbit of f . Denote by Did(M,X) the
identity path component of D(M,X) and let S ′(f,X) = S(f) ∩ Did(M,X).
Homotopy types of stabilizers and orbits of Morse functions were calculated in a series of papers

by Sergiy Maksymenko, Bohdan Feshchenko, Elena Kudryavtseva and others. Furthermore, pre-
cise algebraic structure of such groups for the caseM 6= S2, T 2 was described in [1]. In particular,
the following theorem holds.

Theorem 1. [1] Let M be a connected compact oriented surface except 2-sphere and 2-torus and
let f ∈ F(M,P ). Then π0S ′(f, ∂M) ∈ B, where B is a minimal class of groups satisfying the
following conditions:

1) 1 ∈ B;
2) if A,B ∈ B, then A×B ∈ B;
3 if A ∈ B and n ≥ 1, then A on Z ∈ B.

Note that a group G belongs to the class B i� G is obtained from trivial group by a �nite
number of operations ×, onZ. It is easy to see that every group G ∈ B can be written as a word
in the alphabet A = {1,Z, (, ) ,×, o2, o3, o4, . . . }. We will call such word a realization of the group
G in the alphabet A.
Denote by β1(G) the number of symbols Z in the realization ω of group G. The number β1(G)

is the rank of the center Z(G) and the quotient-group G/[G,G] (Theorem 1.8 [2]). Note, this
number depends only on the group G, not the presentation ω. Moreover, β1(G) is �rst Betti
number of O(f).
Edge of Γf will be called external if it is incident to the vertex of Γf that is corresponding to

a non-degenerate critical point of f or non-�xed boundary component of ∂M with respect to the
action of S

′
(f,W ) for f-adapted submanifold X which contains W = S1 × 0. Otherwise, it will

be called internal. Denote by ]Orbint(M,W ) the number of orbits of the action of S
′
(f,W ) on

internal edges of Γf |X .
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Theorem 2. Let M be a disk D2 or a cylinder C = S1 × [0, 1] and f ∈ F(M,P ). Then

]Orbint(M,W ) = β1(π0S
′
(f, ∂M)),

where W = ∂M if M = D2 or W = S1 × 0 if M is a cylinder.
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Let E be a complex vector space over a compact boundaryless manifold M. In this communi-
cation, G denotes either the group of non-formal, invertible bounded classical pseudodi�erential
operators or the group of invertible elements of the algebra of non-formal, maybe unbounded,
classical pseudodi�erential operators of integer order, equipped with a given di�eology which
makes classical composition and inversion smooth. H is the normal subgroup of G of operators
which are equal to Id up to a smoothing operator. We also assume that the group H is regular
for its subgroup di�eology. We analyze the short exact sequence

Id→ H → G→ G/H → Id,

where G/H is understood as a group of formal pseudodi�erential operators, along the lines of
the theory of principal bundles, where, G is the total space, G/H is the base space and H is the
structure group.

Problem 1. There is actually no local slice G/H → G, or in other words the principal bundle
G→ G/H has no known local trivialization.

Therefore, one has to consider what has been called by Souriau as "structure quantique" in
[4] and di�eological connections along the lines of Iglesias-Zemmour [1] in order to interpret the
so-called smoothing connections described in [2] (that we generalize here for S1 to any M) in
terms of horizontal paths. More precisely, we show:

Theorem 2. Any smoothing connection in the sense of [2] de�nes a di�eological connection along
the lines of [1].

and we explain how one can understand the notion of curvature of covariant derivatives, with
values in smoothing operators, in terms of curvature of a connection 1-form on G→ G/H.
Then, we specialize toM = S1, by giving more examples of smoothing connections, and explain

in this context how the Schwinger cocyle is, in cohomology, a �rst Chern form of the principal
bundle G → G/H for a given smoothing connection. We �nish the exposition of the results
by showing that higher Chern forms tr(Ωk) of this connection with curvature Ω de�ne closed
2k−cocycles on the Lie algebra of G, and that the cocycle obtained for k = 2 is non trivial, along
the lines of [3].
As a conclusion, we give open problems related both to our construction and to the interpre-

tation of index-like problems on pseudod�erential operators.
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Let G and H be two groups acting on path connected topological spaces X and Y respectively.
Assume that H is �nite of order m and the quotient maps p : X → X/G and q : Y → Y/H
are regular coverings. Then it is well-known that the wreath product G o H naturally acts on
W = Xm × Y , so that the quotient map r : W → W/(G o H) is also a regular covering. We
give an explicit description of π1(W/(G oH)) as a certain wreath product π1(X/G) o∂Y π1(Y/H)
corresponding to a non-e�ective action of π1(Y/H) on the set of maps H → π1(X/G) via the
boundary homomorphism ∂Y : π1(Y/H)→ H of the covering map q.
Such a statement is known and usually exploited only when X and Y are contractible, in which

case W is also contractible, and thus W/(G oH) is the classifying space of G oH.
The applications are given to the computation of the homotopy types of orbits of typical

smooth functions f on orientable compact surfaces M with respect to the natural right action of
the groups D(M) of di�eomorphisms of M on C∞(M,R).
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In this talk, we will mainly discuss the topology and arithmetic properties of degenerations of
curves and surfaces. First, we investigate the in�uences of the base points of cubic pencils on the
Mordell-Weil groups in this part. We pay attention to 8, 7 ,6 and 5 base points in general position
for such cubic pencil, and classify these cubic pencils. And we give the following theorem:

Theorem 1. This is the main theorem (taken from [2]).
Given n (= 8, 7, 6, 5) points in general position in P2, S : sH1 + tH2 = 0, [s, t] ∈ P1 is a cubic

pencil with n (= 8, 7, 6, 5) simple base points. Then, the Mordell-Weil groups of the �brations are
isomorphic to two types respectively:

E8 : y2 = x3 + x(
3∑

i=0

pit
i) +

3∑

i=0

qit
i + t5, y2 = x3 + t2x2 + x(

2∑

i=0

pit
i) +

4∑

i=0

qit
i + t5 (1)

E∨7 : y2 = x3 + x(p0 + p1t+ t3) +
4∑

i=0

qit
i, y2 + txy = x3 + x(

2∑

i=0

pit
i) +

3∑

i=0

qit
i − t4 (2)

E∨6 : y2 + t2y = x3 + x(
2∑

i=0

pit
i) + (

2∑

i=0

qit
i), y2 + txy = x3 + x(

2∑

i=0

pit
i) + (

3∑

i=0

qit
i) (3)

D∨5 : y2 + p5xy = x3 + p4tx
2 + (p8t

2 + p2t
3)x+ p6t

4 + t5 (4)

A Del Pezzo surface X is either P1 × P1 or the blow-up of P2 in m (m = 1, · · · , 8) points in
general position. The degree d of X is de�ned to be d = 9−m. As an application, we give a new
proof of the number of (−1) curves in Del Pezzo surfaces.

Theorem 2. The number of (−1) curves in Del Pezzo surfaces of degree 1, 2, 3, 4 is 240, 56, 27
and 16 respectively.

In the second part, we talk about the surfaces of minimal degree in Pn. In fact, the degree of
such surface is n− 1. The fundamental group of Galois cover of surface is an important invariant
of the moduli space of such surfaces. In [1], we use the tools of degenerations of surfaces to prove
the following theorem:

Theorem 3. The Galois cover of the surface of minimal degree is simple-connected and general
type.

In the end, we give an open question:
Question: It is well known that the fundamental groups of most surfaces of general type are

non commutative. But it is not easy to �nd concrete examples of such surfaces. Let ak be a series
of integral number whose limit is in�nity. How to give a series of surfaces of degree ak whose the
fundamental groups of Galois covers are all non commutative?
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In the paper "Kumpera�Ruiz algebras in Goursat �ags are optimal in small lengths" (J. Math.
Sciences 126 (2005), 1614 � 1629) we conjectured that the two notions 'strongly nilpotent' (Def-
inition 3 up there) and 'tangential' (De�nition 6 up there) are but synonyms in the world of
Goursat �ags. Now a concrete road map to a possible proof of that long-standing conjecture is
being proposed.
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Questions of the evolution of the Universe, the nature of forces and physical processes at
an early stage of the evolution of the Universe are the most relevant in theoretical high-energy
physics. The evolution of the Universe is connected with phase transitions in vacuum, represented
by alternating minima and maxima of the potential. The discovery of the Higgs boson led to
the problem of a metastable vacuum in the mechanism of electroweak symmetry breaking and
con�rmed the hypothesis that a vacuum decay took place. Such a transition in vacuum between
two minima can be represented in D-brane language. D-brane approach is realized through Planck
brane in the left minimum of potential and TeV brane in the right minimum of potential. Every
D-brane presented in terms of vector bundle is characterized by topological invariant, [1]. So, the
calculation of topological invariants informs us about the possibility of phase transitions between
di�erent states of vacuum.
We considered two universal bundles α5

2 : (V2(R5), p, G2(R5)), α6
2 : (V2(R6), p, G2(R6)) which

are isomorphic to vector bundles, γ5
2 , γ

6
2 correspondingly. Taking into account the theorem on the

existence of a vector bundle Vρ(n)+1(Rn)→ Sn−1, [2] for n > 4, and using the fact

PRn−1

PRn−2
→ V1(Rn) = Sn−1

we presented the exact sequence

0→ π3(V1(R4))→ π4(V1(R5)) = Z.

We used the equivalence of homotopic groups

π3(V1(R4)) = π3(V2(R5))

π4(V1(R5)) = π4(V2(R6))

according to [2] with F = R, c = 1, k = 1.
Using the fact that D-branes can be represented as a vector bundles with a base - a sphere

and using the embedding of spheres, S4 ⊂ S5, we observe a transition from one solitonic state in
the form of D5-brane to D4-brane with the corresponding equidistant set of energy levels. The
obtained result signals about the possibility of phase transitions in the form of vacuum decay
from Planck brane to TeV brane.
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De�nition 1. Open O-spheroid with rank n, or O-spheroid with rank n, in a metric space (X, ρ)
with a metric ρ, n ∈ N, is a set

A = {x ∈ X | ρ(x, x1) + · · ·+ ρ(x, xn) < a},
where x1, . . . , xn are di�erent �xed points of the space (X, ρ), called the foci, and a is a �xed
positive number, called the distance. We can get a respective de�nition in linear normed spaces.

De�nition 2. Closed O-spheroid with rank n in a metric space (X, ρ) with a metric ρ, n ∈ N, is
a set

A = {x ∈ X | ρ(x, x1) + · · ·+ ρ(x, xn) ≤ a},
where x1, . . . , xn are di�erent �xed points of the space (X, ρ), called the foci, and a is a �xed
positive number, called the distance. We can get a respective de�nition in linear normed spaces.

Remark 3. Sn(x1, . . . , xn; a) is an open O-spheroid with rank n with the foci in points x1, . . . , xn
and the distance a. If we talk about open O-spheroid understanding what namely O-spheroid we
discuss, we note it Sn.

De�nition 4 ([11, ñ. 193]). Border of (open or closed) O-spheroid with rank n, or n-ellipse with
the foci x1, . . . , xn and the distance a, in a metric space (X, ρ) we name the set

A = {x ∈ X | ρ(x, x1) + · · ·+ ρ(x, xn) = a}.
De�nition 5. Focal closeness of our O-spheroid with rank n equals to

π(Sn(x1, . . . , xn; a)) := min
1≤i<j≤n

ρ(xi, xj).

De�nition 6. Focal remoteness of our O-spheroid with rank n equals to

Φ(Sn(x1, . . . , xn; a)) := max
1≤i<j≤n

ρ(xi, xj).

De�nition 7. If all the foci belong to O-spheroid, then it is called a multicentered one.

Theorem 8. Let's assume we have an O-spheroid Sn(x1, . . . , xn; a) in a metric space (X, ρ) with
a metric ρ, n > 1. If it is multicentered then

π(Sn) <
a

n− 1
.

Theorem 9. Let's assume we have an O-spheroid Sn(x1, . . . , xn; a) in a metric space (X, ρ) with
a metric ρ, n > 1. If we have that

Φ(Sn) <
a

n− 1
,

then this O-spheroid is multicentered.

Theorem 10. Either all open and closed O-spheroids in arbitrary metric space (X, ρ) with a
metric ρ, or their borders, are bounded sets.

Remark 11. All closed O-spheroids in any Euclidean metric space (Rm, ρ) with a standard
metric ρ are compact sets.
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De�nition 12. Metric space (X, ρ) with a metric ρ is called convex, if next conditions are
satis�ed:
1) X is a linear vector space;
2) ∀{x, y, z} ⊂ X ∀α ∈ [0; 1] we get:

ρ(αx+ (1− α)y, z) ≤ αρ(x, z) + (1− α)ρ(y, z).

Theorem 13. If (X, ρ) is a convex metric space with a metric ρ, then ∀{x1, . . . , xn} ⊂ X ∀a > 0
open O-spheroid Sn(x1, . . . , xn; a) is a connected set.

Remark 14. All O-spheroids in linear normed spaces are connected sets.

Theorem 15. If (X, ρ) is a convex metric space with a metric ρ, then ∀{x1, . . . , xn} ⊂ X ∀a > 0
open O-spheroid Sn(x1, . . . , xn; a) is a connected set.

Theorem 16. Let's assume that Sn(x1, . . . , xn; a) is a non-empty O-spheroid in a convex metric
space (X, ρ) with a metric ρ. Then its border is equal to its boundary.

De�nition 17 ([7, ñ. 236]). Fermat�Torricelli point for �xed points {x1, . . . , xn} is such point
x ∈ X, that ∀x ∈ X:

n∑

k=1

ρ(x, xk) ≤
n∑

k=1

ρ(x, xk).

De�nition 18. Voronoi radius of O-spheroid Sn(x1, . . . , xn; a) we call number

R(Sn) := sup
x∈Sn

inf
y∈∂Sn

ρ(x, y).

Theorem 19. Let's assume that Sn(x1, . . . , xn; a) is a non-empty O-spheroid in any Euclidean
metric space (Rm, ρ) with a standard metric ρ, meanwhile x is a Fermat�Torricelli point for its
foci. Then next inequality is correct:

a−
n∑
k=1

ρ(x, xk)

n
≤ R(Sn).
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In [1] it was proved that every simply connected surface S ∈ C4 non-zero Gaussian and middle
of curvatures admits in�nitely small (in.sm.) �rst-order deformations with a stationary Ricci
tensor whose tensor �elds have the representations

Tαβ = ϕgαβ, T k = ϕαd
αk + µαc

αβdkβ,

where functions µ (x1, x2) and ϕ (x1, x2) of class C3 satisfy the following second-order partial
di�erential equation: (

dαβϕα
)
,β

+ 2Hϕ = µα,kc
αβdkβ + µαc

αβ
(
dkβ
)
,k
. (1)

Let S be a surface of negative Gaussian curvature. Then (1) is an equation of hyperbolic type,
which in asymptotic lines takes the form

ϕ12 + dϕ1 + lϕ2 + cϕ = f(µ) (2)

where d, l, c are known functions of the point S, µ (x1, x2) is prede�ned function.
For equation (2), consider the Darboux problem: We will look for such an integral that takes

certain values on the characteristics x1 = x1
0, x

2 = x2
0; ϕ (x1, x2

0) = λ(x1), ϕ (x1
0, x

2) = τ(x2).
Then each pair of functions will λ(x1), τ(x2) match the only solution ϕ(x1, x2) equation (2)

with known right side [2].
Fair

Theorem 1. Every simply connected surface of negative Gaussian curvature of the class C4 and
without umbilical points admits ain.sm.deformations of the �rst order with preservation of the
Ricci tensor. In this case, the strain tensors are expressed in terms of a preassigned function of
two variables and two arbitrary functions of the class C3, each from one variable.

It should be noted that many phenomena in mechanics, physics, and biology are reduced to the
study of hyperbolic equations. To describe these phenomena completely for hyperbolic equations,
the Darboux problem is posed.

References

[1] T. Podousova, N. Vashpanova. Deformations of surfaces from stationary Ricci Tensor. Mechanics and Mathe-
matical methods, 2(2):51�62, 2020. https://doi.org/10.31650/2618-0650-2020-2-2-51-62

[2] A. V. Bitsadze. Some classes of partial di�erential equations. M: Nauka, 1981.



38

Structures of optimal �ows on the Boy's and Girl's surfaces

Alexandr Prishlyak

(Taras Shevchenko National University of Kyiv)
E-mail: prishlyak@yahoo.com

For a closed oriented surface, the Morse-Smale �ows with a minimum number of �xed points
(optimal ms-�ow) has a single source and sink, is de�ned by a chord diagram, and can be embed-
ded in R3 [3]. For the projective plane, the optimal �ow has three critical points, but it cannot
even be mapped on any immersion in R3. The simplest immersions with one triple point are
Boy's and Girl's surfaces [1, 2]. Each of the surfaces has a natural strati�cation (cellular struc-
ture). It consists of one 0-strata, three 1-strata (A,B,C) and four 2-strata. In the Boy's surface
2-strata are set by their boundaries: A, B, C, ABA−1CAC−1BCB−1. On the Girl's surface, the
boundaries of 2-strata are as follows: A, B, ABA−1CB−1, AC−1C−1BC.
We describe all possible structures of �ows on these surfaces with respect to the homeomorphism

(isotopy) of the surface using separatrix diagrams and methods of papers [4, 5, 6, 7].
For the �ows with one isolated point and a minimum number of separatrices, there are 18 (108 )

structures per Boy's surface (with one separatrix) and 3 (6 ) structures per Girl's surface (without
separatrices).
For optimal ms-�ows on the surfaces as strati�ed sets, there are 342 (2004 ) and 534 (1058 )

�ows, respectively. These �ows have by 4 �xed points: 0-strata and by one point on each 1-strata.
There are 80 (438 ) and 118 (230 ) di�erent structures for the ms-�ows on the projective plane

that are mapping on these surfaces. The �ows have by 3 sources, 3 sinks and 5 saddles (0-strata
has triple counting and points from 1-stratas have double counting).
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Let R be a Bezout domain with identity e 6= 0, i.e. R is an integral domain in which every
�nite generated ideal is principal. Further, let Rm,n denote the set of m×n matrices over R, and
GL(n,R) be the set of n× n invertible matrices over R. In what follows, In is the identity n× n
matrix, 0m,k is the zero m× k matrix, di(A) ∈ R is an ideal generated by the i−th order minors
of the matrix A ∈ Rm,n, i = 1, 2, . . . ,min{m,n}.
Let A ∈ Rm,n and B ∈ Rm,k be nonzero matrices. Consider the nonhomogeneous matrix

equation
AX = B, (1)

where X is unknown matrix in Rn,k. Denote by AB =
[
A B

]
∈ Rm,n+k the extended matrix

of the linear equations (1). It is known (see [1], [3], [4], [6]) that the equation (1) over a Bezout
domain R is solvable if and only if rankA = rankAB = r and di(A) = di(AB) for all i = 1, 2, . . . , r.
The problem of solvability of the equation (1) has drawn the attention of many mathematicians

(see [1]�[12] and references therein). This is explained not only by the theoretical interest to
this problem ([1], [3], [4], [6], [8]�[11]), but also by the existence of numerous applied problems
connected with the necessity of solution of linear matrix equations ([2], [5], [7], [12]). It may be
noted, that the equation (1) over Bezout domains is important in automatic control theory [2].
1. On application of the Hermite Normal Form. In the Bezout domain R we �x a set of

non-associated elements R̃. Every non-associated element a ∈ R̃ we associated with a complete
system of residues modulo ideal (a). Let A ∈ Rm,n and rankA = r. Further, we assume that the
�rst row of the matrix A is nonzero. For the matrix A there exists W ∈ GL(n,R) such that

AW = HA =




H1 0m1,n−1

H2 0m2,n−2

. . . . . .
Hr 0mr,n−r


 =

[
H(A) 0m,n−r

]

is a lower block-triangular matrix, where H(A) ∈ Rm,r, H1 =

[
h1

∗

]
∈ Rm1,1, H2 =

[
h21 h2

∗ ∗

]
∈

Rm2,2, . . . , Hr =

[
hr1 . . . hr,r−1 hr
∗ ∗ ∗ ∗

]
∈ Rr,r and m1 + m2 + · · · + mr = m. The elements hi

belong to the set of non-associated elements R̃ for all i = 1, 2, . . . , r. Moreover, in the �rst rows[
hi1 . . . hi,i−1 hi

]
of the matrices Hi, i ≥ 2, the elements hij belong to a complete system of

residues modulo ideal (hi) for all j = 1, 2, . . . , i − 1. The lower block-triangular matrix HA is
called the (right) Hermite normal form of the matrix A and it is uniquely de�ned for A (see [3]).
In this parch we propose necessary and su�cient conditions of solvability for the equation (1)

over a Bezout domain in terms of the Hermite normal forms of m × (n + k) matrices
[
A 0m,k

]

and
[
A B

]
. A method for �nding its solutions is also given. In what follows, we assume that

the fest row of the matrix A is nonzero.

Theorem 1. Let A ∈ Rm,n and B ∈ Rm,k. The matrix equation AX = B is solvable over a
Bezout domain R if and only if the Hermite normal forms of matrices

[
A 0m,k

]
and

[
A B

]
are

coincide.
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It is easy to see that matrix equation (1) is solvable over a Bezout domain R if and only if the
matrix equation H(A)Y = B is solvable over R. Let Y0 ∈ Rr,k be the solution of H(A)Y = B.

Then for arbitrary matrix P ∈ Rn−r,k the matrix XP = W−1

[
Y0

P

]
is a general solution of equation

(1). Theoretically speaking, the solution X0 = W−1

[
Y0

0m−r,n

]
of equation (1) can be written as

the matrix expression X0 = TXP , where T ∈ Rn,n. Thus, XP is the right divisor of X0 for an
arbitrary matrix P ∈ Rn−r,k. Given the solution X0, we determine all possible ranks of other
solutions of the equation (1), i.e. rankB ≤ rankXP ≤ n+ rankB − rankA.
2. A method of matrix transformations. In this part we apply matrix transformations

for established conditions under which the equation (1) is solvable.
Let A ∈ Rm,n and B ∈ Rm,k be nonzero matrices and let rankA = r ≥ 1. For A there

exist matrices U ∈ GL(m,R) and V ∈ GL(n,R) such that UAV =

[
C 0r,n−r

0m−r,r 0m−r,n−r

]
, where

C ∈ Rr,r. It is clear that detC = c 6= 0. In what follows C∗ = AdjC means the classical adjoint
matrix of the matrix C, i.e. C∗C = cIr. Based on the above, we obtain the following theorem.

Theorem 2. The matrix equation AX = B is solvable over a Bezout domain R if and only if

UB =

[
D

0m−r,k

]
, where D ∈ Rr,k, and C

∗D = cG, where G ∈ Rr,k.

If the equation AX = B is solvable, then for arbitrary matrix Q ∈ Rm−r,k the matrix XQ =

U−1

[
G
Q

]
is a general solution of equation AX = B.

From Theorem 2 we obtain the following comment. Let A,B ∈ Rm,n be nonzero matrices and
let rankA < n. Suppose the matrix equation AX = B is solvable and XQ ∈ Rn,n is its general
solution. Then AX = B has solutions X̃i ∈ Rn,n, i = 1, 2, . . . , such that XQ = X̃iTi, where
Ti ∈ Rn,n.
Presented results above can be extended to linear nonhomogeneous equations over commutative

rings of a more general algebraic nature.
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Here are the names of (almost all) prede�ned theorem-like environments.

Theorem 1. For given f ∈ H and g ∈ H the problem

{ ut(t) + Au(t) = f, 0 6 t < T2

u(0) = g
(1)

has a unique solution u ∈ C([0, T ), H) ∩ C1((0, T ), H) given by

u = e−tAg + A−1(I − e−tA)f (2)

(JA. Goldstein, Semi-groups of linear operators and applications, Oxford university, press New
York. 1985.).

Lemma 2. For 0 < α < 1 et p > 0, on a les estimations suivantes :

supn>1(1− 1

1 + α2λ2
ne

2λnT1
)(1 + λ2

n)
−p
2 6 max(1, T p−2

1 , T p1 )max(α, (ln(
1√
α

))−p) (3)

supn>1
βne

−λnTi

1 + α2λ2
ne

2λnT1
6 max(1, T−1

1 )
γ√
α
, i = 1, 2 (4)

supn>1
βn

(1 + α2λ2
ne

2λnT1)λn
6 max(1, λ−2

1 )
γ

α
, (5)

With

γ =
1

1− e−λ1(T2−T1)
(6)

Problem 3.

Let H be a separable Hilbert space with the inner product (.;.) and the norm ‖.‖ and let A : H →
H be a positive self-adjoint linear operator with a compact resolvent. Consider the following �nal
value problem: {

ut(t) + Au(t) = f, 0 6 t < T2

u(T1) = Ψ1
(7)

where 0 < T1 < T2 and Ψ1 is a given function on H Our purpose is to identify the initial condition
u(0) and the unknown source f from the overspecied data u(T2) = Ψ2,Ψ2 ∈ H
Hence, the inverse problem can be formulated as follows: determine f and g such that

{
ut(t) + Au(t) = f, 0 6 t < T2

u(0) = g
(8)

from the data {
u(T1) = Ψ1

u(T2) = Ψ2
(9)
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Corollary 4. Let f et g the solutions of (1) , f δα et gδα be the modi�ed Tikhonov approximations,
Let ψδ1 and ψ

δ
2 be the measured data at T1 and T2 satisfying (9), If the regularization parameter is

chosen as α = (
δ

E1

)
2

(p1+2) and α = (
δ

E2

)
2

(p2+2) spectively then, the following error estimates hold

respectively:

‖f−f δα‖ 6 max(1, T p1−1
1 , T p11 )max((

δ

E1

)
2

p1+2 ,
1

(ln(
E1

δ
)

1

p1 + 2 )p1

, )+γmax(1, T−1
1 )(

δ

E1

)
p1+1
p1+2E

p1

p1 + 2
1

(10)

‖g−gδα‖ 6 max(1, T p2−1
1 , T p21 )max((

δ

E2

)
2

p2+2 ,
1

(ln(
E2

δ
)

1

p2 + 2 )p2

, )+γmax(1, T−1
1 )(

δ

E2

)
p2

p2+2E

2 + p2

p2 + 2
2

(11)
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The generalized Bochner technique (see, for example, [1]) allows to broad to the noncompact
but compete Kahlerian spaces some well-known theorems of holomorphically projective unique
de�nability that have been proved previously for the compact ones (see, for example, [2]). Thus,
the next theorems are true.

Theorem 1. Complete connected noncompact Kahlerian Cr-space Kn (n > 2, r > 4) with
positive de�ned metric tensor and the Einstein tensor that doesn't equal to zero, that satis�es the
recurrent conditions

T
(αβ)
ijkl,mhg

mjghlEik
.. =

1

n
T

(αβ)
γh

(
δγµgνm + F γ

µFνm
)
T

(µν)
ijkl g

mjghlEik
.. + T

(αβ)
ijkl W

ijkl + T
(αβ)
ijkl,mW

ijklm,

where
Tαβijkl = nδα(iR

β
j)kl + gl(iT

αβ
j)k − gk(iT

αβ
j)l − Fl(iF

γ
j)T

αβ
γk + Fk(iF

γ
j)T

αβ
γl ,

Tαβγl = δαi R
β
k −Rα

ik
β
.

F i
j � components of tensor of complex structure, Rij � components of Ricci tensor, Eik � com-

ponents of Einstein tensor of the space Kn; W ijkl, W ijklm � components of some contravariant
tensors, "," denotes the corresponding covariant di�erentiation, doesn't admit non-trivial (di�er-
ent from a�ne) holomorphically projective mappings on the whole.

Theorem 2. Complete connected noncompact Kahlerian Cr-space Kn (n > 2, r > 4) with
positive de�ned metric tensor and the Einstein tensor that doesn't equal to zero, that satis�es the
recurrent conditions

P
(αβ)
il,kh g

hiEkl
.. = P

(αβ)
il,k Silk + P

(αβ)
il Sil, (1)

where
Pαβ
il = δβi R

α
.l − δβl Rα

.i,

Rij � components of Ricci tensor, Eij � components of Einstein tensor of the space Kn; Silk, Sil�
components of some contravariant tensor, "," denotes the corresponding covariant di�erentiation,
doesn't admit non-trivial (di�erent from a�ne) holomorphically projective mappings on the whole.

Recurrent conditions (1) may also be transformed to the more general form.
Examples of Kahlerian spaces of considered types are known.
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The topologies on an n-element set with weight k > 2n−1 (k is the number of the elements of
the topology) are called close to the discrete topology. In [1] all T0-topologies have been listed
using the topology vector, an ordered set of the nonnegative integers (α1, α2, ..., αn), αi is one
less than the number of the elements in the minimum neighborhood Mi of the element xi. In [2]
T0-topologies on an n-element set with the vectors (0, ..., 0, αn−1, αn) and (0, ..., 0, 1, 1, αn) in the
caseMn−1∩Mn−2 = ∅ have been investigated. These T0-topologies are consistent with close to the
discrete topology on (n−1)-element set with the vectors (0, ..., 0, αn−1) and the vector (0, ..., 0, 1, 1)
in the case Mn−1 ∩Mn−2 = ∅. The question about T0-topologies which are consistent with close
to the discrete topology on (n − 1)-element set with vectors (0, ..., 0︸ ︷︷ ︸

k

, 1, ..., 1), 1 ≤ k ≤ n − 3,

where all n− 1− k two-element minimum neighborhoods have only one common point, remains
unresolved. This work we found the weight of these T0-topologies.
So, the vector of T0-topologies has the form: (0, ..., 0︸ ︷︷ ︸

k

, 1, ..., 1︸ ︷︷ ︸
n−k−1

, αn), 1 ≤ k ≤ n−3, 2 ≤ αn ≤ n−1

and
⋂n−1
m=k+1Mm = {x1}. The following cases are possible for the minimum neighborhood Mn of

the element xn:
1.
⋂n−1
m=k+1Mm ∩Mn = {x1}, so Mn = {x1, ..., xd, xn−(αn−d), ..., xn−1︸ ︷︷ ︸

αn−d

, xn}. The general formula

for the weight has the form |τ | = 2n−2 + 2k−1 + 2k−d + 2k−d · (2n−k−(αn−d+1) − 1).
2.
⋂n−1
m=k+1Mm ∩Mn = ∅. The general formula for the weight has the form |τ | = 2n−2 + 2k−1 +

2k−αn + 2k−(αn+1) · (2n−k−1 − 1).
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Let Q be an m element set. A ternary operation f de�ned on Q is called invertible and the pair
(Q; f) is a quasigroup of the order m, if for every a, b of Q the terms f(x, a, b), f(a, x, b), f(a, b, x)
de�ne permutations of Q. To each ternary quasigroup (Q; f) of the order m there corresponds a
Latin cube of order m, i.e., a 3-dimensional array on m distinct symbols from Q, each of which
occurs exactly once in any line of the array.
A triplet (f1, f2, f3) of ternary operations is called orthogonal [1], if for all a1, a2, a3 ∈ Q the

system




f1(x1, x2, x3) = a1,

f2(x1, x2, x3) = a2,

f3(x1, x2, x3) = a3

has a unique solution, i.e., superimposition of the corresponding cubes gives a cube such that
every triplet of elements of Q appears exactly once in it.
Geometric interpretation of orthogonality is its relationships with geometric nets. This appli-

cation is well-studied for binary operations and the respective k-nets, projective and a�ne planes
(see for example [2], [3]). Relationships between t-tuples of orthogonal n-ary quasigroups of order
m and (t,m, n)-nets were studied in [4], [5], [6]. The respective nets have the same combinatorial
and algebraic properties.
For every permutation σ ∈ S4 a σ-parastrophe σf of an invertible ternary operation f is de�ned

by
σf(x1σ, x2σ, x3σ) = x4σ :⇐⇒ f(x1, x2, x3) = x4.

In particular, a σ-parastrophe is called:

• an i-th division if σ = (i4) for i = 1, 2, 3;
• principal if 4σ = 4.

Therefore, each ternary operation has at most 4! = 24 parastrophes; among them 3! = 6 principal
parastrophes. An invertible operation and the respective quasigroup are called assymetric if all its
parastrophes are di�erent. A quasigroup is called totally parastrophic orthogonal (top-quasigroup),
if each triplet of its di�erent parastrophes are orthogonal. Binary assymetric top-quasigroups were
studied in [7], for ternary case the following statements are true.

Theorem 1 ([8]). A quasigroup (Q; f) is medial if and only if there exists an abelian group (Q; +)
such that

f(x1, x2, x3) = ϕ1x1 + ϕ2x2 + ϕ3x3 + a, (1)

where ϕ1, ϕ2, ϕ3 are pairwise commuting automorphisms of (Q; +) and a ∈ Q.
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Theorem 2. Let (Q; f) be a medial ternary quasigroup (Q; f) with (1) and τ1, τ2, τ3 ∈ S4. The
parastrophes τ1f , τ2f , τ3f are orthogonal if and only if the determinant∣∣∣∣∣∣∣

ϕ1τ1 ϕ2τ1 ϕ3τ1

ϕ1τ2 ϕ2τ2 ϕ3τ2

ϕ1τ3 ϕ2τ3 ϕ3τ3

∣∣∣∣∣∣∣
is an automorphism of the group (Q; +), where ϕ4 := J and J(x) := −x.
Note, that the pairwise commuting automorphisms ϕ1, ϕ2, ϕ3, J generate a commutative

subring K of the ring End(Q; +). Let ~ν := (ν1, ν2, ν3) be a triplet of injections of the set {1, 2, 3}
into the set {1, 2, 3, 4}. The polynomial

d~ν(γ1, γ2, γ3, γ4) :=

∣∣∣∣∣∣

γ1ν1 γ2ν1 γ3ν1

γ1ν2 γ2ν2 γ3ν2

γ1ν3 γ2ν3 γ3ν3

∣∣∣∣∣∣
over the commutative ring K will be called invertible-valued over a set H ⊆ K, if all its values
are automorphisms of the group (Q; +) when the variables γ1, γ2, γ3, γ4 take their values in H.

Theorem 3. A ternary medial quasigroup (Q; f) with (1) is a top-quasigroup if and only if each
polynomial d~ν is invertible-valued over the set {ϕ1, ϕ2, ϕ3, ϕ4}, where ϕ4 := J .

Theorem 4 ([9]). A ternary medial assymetric top-quasigroup over a cyclic group of the order
m exists if and only if the least prime factor of m is greater than 19.
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We begin with the following important result due to Donaldson [Do] for K�ahler, and Xi [Xi]
for general Hermitian complex manifolds with boundary:

Theorem 1. Let X̄ be a compact complex manifold with non-empty boundary ∂X̄, g be a Her-
mitian metric on X̄ and E be a holomorphic bundle on X̄. Let h be a Hermitian metric on the
restriction E|∂X . There exists a unique Hermitian metric H on E satisfying the conditions

ΛgFH = 0, H|∂X = h,

where FH ∈ A2(X̄,End(E)) denotes the curvature of the Chern connection associated with H.

Note that the map H 7→ ΛgFH is a non-linear second order elliptic di�erential operator, so the
system ΛgFH = 0, H|∂X̄ = h can be viewed as a non-linear Dirichlet problem. The theorem of
Donaldson and Xi states that this non-linear Dirichlet problem is always uniquely sovable.
Note also that the analogue statement for closed manifolds (i.e. in the case ∂X̄ = ∅) does

not hold. Indeed, the classical Kobayashi-Hitchin correspondence states that, for a holmorphic
bundle E on a closed Hermitian manifold (X, g), the equation ΛgFH = 0 is solvable if and only if
degg(E) = 0 (which is a topological condition if g is K�ahlerian) and E is polystable with respect
to g (see [LT]).

Recall that a unitary connection ∇ on a Hermitian di�erentiable bundle (E,H) on X̄ is called
Hermitian Yang-Mills if ΛgF∇ = 0, F 02

∇ = 0. In the classical case dimC(X) = 2 � which plays
a fundamental role in Donaldson theory � these conditions are equivalent to the anti-self-duality
condition F+

∇ = 0.
In [Do] Donaldson shows that Theorem 1 has important geometric consequences:

Corollary 2. Let X̄ be a compact complex manifold with non-empty boundary, g be a Hermitian
metric on X̄ and (E,H) be a Hermitian di�erentiable bundle on X̄. There exists a natural
bijection between:

(1) the moduli space of pairs (E , θ) consisting of a holomorphic structure E on E and a dif-
ferentiable trivialization θ of E|∂X̄ ,

(2) the moduli space of pairs (∇, τ) consisting of a Hermitian Yang-Mills connection on (E,H)
and a di�erentiable unitary trivialization τ of E|∂X̄ .

In other words, the moduli space of boundary framed holomorphic structures on E can be
identi�ed with the moduli space of boundary framed Hermitian Yang-Mills connection on (E,H).

In the special case when X̄ is the closure of a strictly pseudoconvex domain (with smooth
boundary) in Cn, Donaldson states the following result which gives an interesting geometric
interpretation of the quotient C∞(∂X̄,GL(r,C))/O∞(X̄,GL(r,C)) of the group of smooth maps
∂X̄ → GL(r,C) by the subgroup formed by those such maps which extend smoothly and formally
holomorphically to X̄:

Corollary 3. Let O∞(X̄,GL(r,C)) be the group of smooth, formally holomorphic GL(r,C)-valued
maps on X̄, identi�ed with a subgroup of C∞(∂X̄,GL(r,C)) via the restriction map.
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There exists a natural bijection between the moduli space of boundary framed Hermitian Yang-
Mills connections on the trivial U(r)-bundle on X̄ and the quotient C∞(∂X̄,GL(r,C))/O∞(X̄,GL(r,C)).

The idea of proof: Taking into account Corollary 2, it su�ces to construct a bijection between
the quotient C∞(∂X̄,GL(r,C))/O∞(X̄,GL(r,C)) and the moduli space of boundary framed holo-
morphic structures on the trivial di�erentiable bundle X̄ ×Cr. The construction is very natural:
one maps the congruence class [f ] of a smooth map f : ∂X̄ → GL(r,C) to the gauge class of
the pair (the trivial holomorphic structure on X̄ × Cr, f). The main di�culty is to prove the
surjectivity of the map obtained in this way. This follows from the following existence result:

Proposition 4. Let X̄ be the closure of a strictly pseudoconvex domain (with smooth boundary)
in Cn and E be a smooth, topologically trivial holomorphic bundle on X̄. Then E admits a global
smooth trivialization on X̄ which is holomorphic on X.

The statement follows using Grauert's classi�cation theorem for bundles on Stein manifolds
and the following extension theorem, which is proved in [Do] only for n = 2:

Proposition 5. Let X̄ be the closure of a relatively compact strictly pseudoconvex domain (with
smooth boundary) in Cn and E be a smooth, topologically trivial holomorphic bundle on X̄. Then
E extends holomorphically to an open neighborhood U of X̄ in Cn.

In my talk I will explain the idea of proof of the following general extension theorem (see [T]):

Theorem 6. Let M be a complex manifold, X ⊂M an open submanifold of M whose closure X̄
has smooth, strictly pseudoconvex boundary in M . Let G be a complex Lie group, π : Q → M a
di�erentiable principal G-bundle onM and J a holomorphic structure on the restriction P̄ :− Q|X̄ .
There exists an open neighborhood M ′ of X̄ in M and a holomorphic structure J ′ on Q|M ′

which extends J .

The proof uses methods and techniques introduced in [HiNa] and [Ca1].
In the special case when M = Cn and G = GL(r,C) one obtains as corollary Proposition 5

(and hence Corollary 3) in full generality. Moreover, one also obtains the following generalization
of this corollary:

Theorem 7. Let G = KC be the complexi�cation of a compact Lie group K, X̄ be a compact
Stein manifold with boundary and g be a Hermitian metric g on X̄. The moduli space of boundary
framed Hermitian Yang-Mills connections on the trivial K-bundle on (X̄, g) can be identi�ed with
the quotient C∞(∂X̄,G)/O∞(X̄,G).
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We brie�y survey joint works with Ryoto Tange, Hyuga Yoshizaki, and Sohei Tateno.

Twisted Iwasawa invariants of knots [1]. Let K be a knot in S3 with πK = π1(S3 −K) and
let Xn → X = S3−K denote the Z/nZ-cover for each n ∈ Z>0. Let p be a prime number and let
m ∈ Z with p - m. Let ρ : πK → GLN(Op) be a representation over a �nite extension Op of the
p-adic number �eld Qp and let ∆ρ(t) denote the twisted Alexander polynomial. Then we have
the following.

Theorem 1. Let (K, p,m, ρ) be as above. Then there exists some λ, µ, ν ∈ Z such that for
any n � 0, |H1(Xmpn , ρ)tor| = pλn+µpn+ν holds. (We have Nr∆ρ(T ) =̇ pµ(λ + p(lower terms)) in
Zp[[T ]].)
For each (K, p, ρ), there exists some m such that λ/[Op] : Zp] = deg∆ρ(t). Hence for each K,

there exists some (p, ρ,m) such that λ coincides with the genus of K.
For each (p,K, ρ), µ's and λ's determine whether ∆ρ(t) is monic in Op[t] and whether K is

�bered.

Example 2. (1) The λ's of the lifts ρ±hol : πK → SL2(O) of the holonomy representation of the
�gure eight knot K = 41.
(2) For any SL2-representations of the twist knots J(2, 2k) (k ∈ Z), we have µ = 0. We may

expect that if k 6= 0,±1, then there exists some ρ of J(2, 2k) with µ > 0.

Weber's class number problem for knots [2]. Weber's class number problem for number
�elds is mostly unsolved for 200 years. Yoshizaki [3] recently pointed out that the sequence of
the class numbers converges in the ring of p-adic integers Zp. In the knot theory side, we obtain
the following.

Theorem 3. Let K be a knot in S3 and let p be a prime number. Then the sizes of the p-torsion
subgroups of H1(Xpn ;Z) converges in Zp. The limit value is given by the roots of unity that are
close to the roots of the Alexander polynomial ∆K(t).

Example 4. The limit values for the torus knot Ta,b (a, b ∈ Z; coprime) and the twist knot
J(2, 2k) (k ∈ Z).

Iwasawa invariants of the Zpd-covers of links [4]. Cuoco�Monsky gave a variant of the
Iwasawa class number formula for Zpd-extensions of number �elds and pointed out the existence
of the term O(1). In our side, we have the following.

Theorem 5. Let L be a d-component link in a rational homology 3-sphere M and let Yn →
X = M − L denote the Z/nZ d-cover. Then there exists some λ, µ such that the size of p-

torsion subgroup of H1(Yn,Z) is given by pp
(d−1)n(µpn+λn+O(1)), where O(1) is the Bachmann�

Landau notation. If M is an integral homology 3-sphere, then the Zpd-cover is Greenberg, namely,
O(1) is a constant.

Example 6. The values µ, λ, and O(1) of Solomon's link 42
1 and the twisted Whitehead link

W2k−1 (k ∈ Z). We have a link with O(1) 6= 0 and a link with any µ ∈ Z≥0.
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Ïîâåðõíÿ V 2 êëàñó Ck, k > 1 ó ïðîñòîði Ìiíêîâñüêîãî 1R4 íàçèâà¹òüñÿ ïðîñòîðîâîïî-
äiáíîþ (÷àñîïîäiáíîþ, içîòðîïíîþ), ÿêùî äîòè÷íà ïëîùèíà äî íå¨ â êîæíié òî÷öi ¹ ïðî-
ñòîðîâîïîäiáíîþ (÷àñîïîäiáíîþ, içîòðîïíîþ). Áóäåìî ðîçãëÿäàòè òàêi äâîâèìiðíi ïîâåðõíi
ïðîñòîðó 1R4 àáî òàêi îáëàñòi íà öèõ ïîâåðõíÿõ, ó ÿêèõ òèï äîòè÷íî¨ ïëîùèíè â êîæíié
òî÷öi îäèí i òîé ñàìèé. Ïðè ãðàññìàíîâîìó âiäîáðàæåííi ïîâåðõíi V 2 â ãðàññìàíiâ ìíîãî-
âèä PG(2, 4) îòðèìà¹ìî ãðàññìàíîâèé îáðàç ïîâåðõíi V 2. Ãðàññìàíiâ îáðàç ïðîñòîðîâîïîäi-
áíî¨ (÷àñîïîäiáíî¨) äâîâèìiðíî¨ ïîâåðõíi ïðîñòîðó 1R4 ¹ äâîâèìiðíèì ïiäìíîãîâèäîì ìíî-
ãîâèäó ÷àñîïîäiáíèõ (ïðîñòîðîâîïîäiáíèõ) ïëîùèí [2]. Iíäóêîâàíà ìåòðèêà ãðàññìàíîâîãî
îáðàçó ìîæå áóòè çíàêîâèçíà÷åíîþ, çíàêîíåâèçíà÷åíîþ àáî âèðîäæåíîþ, à çíà÷èòü ãðàñ-
ñìàíiâ îáðàç ìîæå áóòè äâîâèìiðíîþ ïðîñòîðîâîïîäiáíîþ, ÷àñîïîäiáíîþ àáî içîòðîïíîþ ïî-
âåðõíåþ. Ç'ÿñó¹ìî ïèòàííÿ ïðî òèï ãðàññìàíîâîãî îáðàçó ïîâåðõîíü ç ïëîñêîþ íîðìàëüíîþ
çâ'ÿçíiñòþ.
Ïîíÿòòÿ ïëîñêî¨ íîðìàëüíî¨ çâ'ÿçíîñòi ïiäìíîãîâèäó ðèìàíîâîãî ìíîãîâèäó áóëî ââåäåíî

Å.Êàðòàíîì [1]. Ïiäìíîãîâèäè ç ïëîñêîþ íîðìàëüíîþ çâ'ÿçíiñòþ ¹ ïiäìíîãîâèäàìè ç íóëüî-
âèì òåíçîðîì ñêðóòó. Âàæëèâîþ âëàñòèâiñòþ ïîâåðõîíü ç ïëîñêîþ íîðìàëüíîþ çâ'ÿçíiñòþ
¹ iñíóâàííÿ êîîðäèíàòíî¨ ñiòêè, âiäíîñíî ÿêî¨ ïåðøó òà îáèäâi äðóãi êâàäðàòè÷íi ôîðìè ìî-
æíà îäíî÷àñíî çâåñòè äî äiàãîíàëüíîãî âèäó. Öÿ êîîðäèíàòíà ñiòêà ¹ ñiòêîþ ëiíié êðèâèíè.
Ïîâåðõíi ç ïëîñêîþ íîðìàëüíîþ çâ'ÿçíiñòþ òà ¨õ ãðàññìàíîâi îáðàçè ó ïðîñòîði Ìiíêîâñüêî-
ãî ìàþòü ùå äîäàòêîâi âëàñòèâîñòi:
1) ÿêùî ãðàññìàíîâèé îáðàç ÷àñîïîäiáíî¨ ïîâåðõíi V 2 ⊂1 R4 ç ïëîñêîþ íîðìàëüíîþ

çâ'ÿçíiñòþ íåâèðîäæåíèé, òî âií ¹ ÷àñîïîäiáíîþ ïîâåðõíåþ;
2) íåâèðîäæåíèé ãðàññìàíîâèé îáðàç ïðîñòîðîâîïîäiáíî¨ ïîâåðõíi ç ïëîñêîþ íîðìàëüíîþ

çâ'ÿçíiñòþ ìîæå áóòè àáî ïðîñòîðîâîïîäiáíîþ, àáî ÷àñîïîäiáíîþ, àáî içîòðîïíîþ ïîâåðõíåþ;
3) òèï íåâèðîäæåíîãî ãðàññìàíîâîãî îáðàçó ãiïåðïîâåðõíi V 2 äåÿêîãî òðèâèìiðíîãî ïiä-

ïðîñòîðó ïðîñòîðó 1R4 ñïiâïàäà¹ ç òèïîì ïîâåðõíi V 2.
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Ñåðåä ðîáiò ïî ãåîäåçè÷íèì âiäîáðàæåííÿì ïñåâäîðiìàíîâèõ ïðîñòîðiâ îñîáëèâå ìiñöi çà-
éìà¹ ðîáîòà 1896 ðîêó Ò. Ëåâi-×åâiòè, â ÿêié âií, âèõîäÿ÷è ç ðiâíÿíü äèíàìiêè, ñôîðìóëþâàâ
ïîñòàíîâêó çàäà÷i òà îòðèìàâ îñíîâíi ðiâíÿííÿ [1]. Îñîáëèâiñòþ ðîáîòè ¹ âèêîðèñòàííÿ òåí-
çîðíèõ ìåòîäiâ.
Ïiñëÿ òîãî, ÿê òåíçîðíi ìåòîäè äîñëiäæåííÿ çàéíÿëè äîìiíóþ÷i ïîçèöi¨ â äèôåðåíöiàëüíié

ãåîìåòði¨, Ã. Âåéëü, Ë.Ï. Åéçåíõàðò, Â.Ô. Êàãàí, Ã.I. Êðó÷êîâè÷, À.Ñ. Ñîëîäîâíiêîâ òà iíøi
ïîáóäóâàëè ñòðóíêó òåîðiþ ãåîäåçè÷íèõ âiäîáðàæåíü ïñåâäîðiìàíîâèõ ïðîñòîðiâ, iíâàðiàí-
òíó âiäíîñíî âèáîðó ñèñòåìè êîîðäèíàò.
Íîâèé ïîøòîâõ öÿ òåîðiÿ îòðèìàëà ïiñëÿ ðîáiò Ì.Ñ. Ñèíþêîâà, ÿêèé çâiâ çàäà÷ó äî

äîñëiäæåííÿ ëiíiéíî¨ ñèñòåìè äèôåðåíöiàëüíèõ ðiâíÿíü [2].
Âçà¹ìíî îäíîçíà÷íà âiäïîâiäíiñòü ìiæ òî÷êàìè ïñåâäîðiìàíîâèõ ïðîñòîðiâ Vn ç ìåòðè-

÷íèì òåíçîðîì gij òà V̄n ç ìåòðè÷íèì òåíçîðîì ḡij íàçèâà¹òüñÿ ãåîäåçè÷íèì âiäîáðàæåííÿì,
ÿêùî ïðè íié êîæíà ãåîäåçè÷íà ëiíiÿ Vn ïåðåõîäèòü â ãåîäåçè÷íó ëiíiþ V̄n.
Ïñåâäîðiìàíiâ ïðîñòið Vn, â ÿêîìó iñíó¹ òåíçîð Ai1i2...ik òàêèé, ùî Ai1i2...ik,j = 0, íàçèâà-

þòü A-ñèìåòðè÷íèì. Òóò êîìà �,� çíàê êîâàðiàíòíî¨ ïîõiäíî¨ ïî çâ'ÿçíîñòi Vn. Ãåîäåçè÷íî
A-ñèìåòðè÷íèì íàçèâà¹ìî ïñåâäîðiìàíiâ ïðîñòið, â ÿêîìó óìîâà A-ñèìåòðè÷íîñòi âèêîíó-
¹òüñÿ äëÿ êîâàðiàíòíî¨ ïîõiäíî¨ ïî çâ'ÿçíîñòi ãåîäåçè÷íî âiäïîâiäíîãî äàíîìó ïðîñòîðó Vn
ïñåâäîðiìàíîâîãî ïðîñòîðó V̄n [3].
Çîêðåìà, ÿêùî äëÿ òåíçîðà Ði÷÷i ïñåâäîðiìàíîâîãî ïðîñòîðó Vn âèêîíó¹òüñÿ óìîâà∇kRij =

0 (òóò ∇ çíàê êîâàðiàíòíî¨ ïîõiäíî¨ ïî çâ'ÿçíîñòi V̄n), òî òàêié ïðîñòið íàçèâà¹ìî ãåîäåçè÷íî
Ði÷÷i ñèìåòðè÷íèì. ßêùî öÿ óìîâà âèêîíó¹òüñÿ äëÿ òåíçîðà Ðiìàíà, òî ïðîñòið ìà¹ íàçâó
ãåîäåçè÷íî ñèìåòðè÷íèé.
Äîâåäåíî, ùî íå iñíó¹ ãåîäåçè÷íî Ði÷÷i ñèìåòðè÷íèõ ïðîñòîðiâ âiäìiííèõ âiä ïðîñòîðiâ

Åéíøòåéíà, à òàêîæ, ùî íå iñíó¹ ãåîäåçè÷íî ñèìåòðè÷íèõ ïñåâäîðiìàíîâèõ ïðîñòîðiâ âiä-
ìiííèõ âiä ïðîñòîðiâ ñòàëî¨ êðèâèíè.
Òàêèì ÷èíîì, ãåîäåçè÷íî Ði÷÷i ñèìåòðè÷íi òà ãåîäåçè÷íî ñèìåòðè÷íi ïðîñòîðè iñíóþòü

ëèøå òîäi, êîëè âîíè ïðîñòîðè Åéíøòåéíà òà ïðîñòîðè ñòàëî¨ êðèâèíè âiäïîâiäíî.
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Äîñëiäæóâàëèñÿ êâàçi-ãåîäåçè÷íi âiäîáðàæåííÿ [1] óçàãàëüíåíî-ðåêóðåíòíèõ ïðîñòîðiâ ïà-
ðàáîëi÷íîãî òèïó [3] (Vn, gij, F

h
i ) i (V n, gij). Îñíîâíi ðiâíÿííÿ òàêîãî âiäîáðàæåííÿ â ñóìiñíié

çà âiäîáðàæåííÿì ñèñòåìi êîîðäèíàò (xi) ìàþòü âèãëÿä [3]

Γ
h

ij(x) = Γhij(x) + ψ(i(x)δhj) + φ(i(x)F h
j)(x),

Fij = −Fji, Fij = giαF
α
j , F ij = −F ji, F ij = giαF

α
j ,

F h
αF

α
i = 0

F h
(i,j) = F h

(iqj),

Γ
h

ij,Γ
h
ij - êîìïîíåíòè îá'¹êòiâ çâ'ÿçíîñòi V n i Vn; ψi, ϕi - äåÿêi êîâåêòîðè; ”,” - çíàê êîâàði-

àíòíî¨ ïîõiäíî¨ â Vn.
ßêùî äèôåðåíöiàëüíi ðiâíÿííÿ äëÿ àôiíîðà íàáóâàþòü âèãëÿäó F h

(i,j) = F h
(iqj), ìè íà-

çèâà¹ìî àôiíîðíó ñòðóêòóðó óçàãàëüíåíî-ðåêóðåíòíîþ, à ïðè F h
i,j = F h

i qj - ðåêóðåíòíî-
ïàðàáîëi÷íîþ.
Ìè ââàæà¹ìî, ùî óçàãàëüíåíî-ðåêóðåíòíà ñòðóêòóðà iíòåãðîâíà i êâàçi-ãåîäåçè÷íå âiä-

îáðàæåííÿ çáåðiãà¹ âåêòîð óçàãàëüíåíî¨ ðåêóðåíòíîñòi [3], îòæå â ïðîñòîði (V n, gij) äëÿ àôi-
íîðà F h

i âèêîíóþòüñÿ ñïiââiäíîøåííÿ

F h
(i|j) = F h

(iqj),

äå ”|” - çíàê êîâàðiàíòíî¨ ïîõiäíî¨ âiäíîñíî çâ'ÿçíîñòi Γ â Vn.
Ïîáóäîâàíî ãåîìåòðè÷íi îá'¹êòè, iíâàðiàíòíi âiäíîñíî êâàçi-ãåîäåçè÷íîãî âiäîáðàæåííÿ

óçàãàëüíåíî-ðåêóðåíòíèõ ïðîñòîðiâ ïàðàáîëi÷íîãî òèïó, à òàêîæ ðåêóðåíòíî-ïàðàáîëi÷íèõ
ïðîñòîðiâ. Íàâîäèòüñÿ ðÿä óìîâ íà öi îá'¹êòè, ùî ïðèçâîäÿòü äî òîãî, ùî óçàãàëüíåíî-
ðåêóðåíòíèé ïðîñòið ïàðàáîëi÷íîãî òèïó äîïóñêà¹ ïàðàáîëi÷íó Ê-ñòðóêòóðó, äëÿ ÿêî¨ F h

(i,j) =
0, à ðåêóðåíòíî-ïàðàáîëi÷íèé ïðîñòið äîïóñêà¹ êåëåðîâó ñòðóêòóðó ïàðàáîëi÷íîãî òèïó.
Âèâ÷åíî ñïåöiàëüíi òèïè êâàçi-ãåîäåçè÷íèõ âiäîáðàæåíü óçàãàëüíåíî-ðåêóðåíòíèõ ïðîñòî-

ðiâ, ùî çáåðiãàþòü äåÿêi òåíçîðè âíóòðiøíüîãî õàðàêòåðó.
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Àâòîìîðôíi ôóíêöi¨ òà àëãåáðè äâîâèìiðíèõ
ñèíãóëÿðíèõ iíòåãðàëüíèõ îïåðàòîðiâ

Ìîçåëü Â. Î.

(âóë. Ñåðåäíüîôîíòàíñüêà, 19-Á, êâ. 270, 65039, Îäåñà, Óêðà¨íà)
E-mail: mozel@ukr.net

Íåõàé D � âiäêðèòèé îäèíè÷íèé êðóã êîìïëåêñíî¨ ïëîùèíè. Â ãiëüáåðòîâîìó ïðîñòîði
L2(D) ââåäåìî íàñòóïíi îïåðàòîðè:
K � äîáðå âiäîìèé îïåðàòîð Áåðãìàíà;
W = Wg � óíiòàðíèé (içîìåòðè÷íèé) îïåðàòîð çâàæåíîãî çñóâó, óòâîðåíèé ïàðàáîëi÷íèì

àáî ãiïåðáîëi÷íèì äðîáíî-ëiíiéíèì ïåðåòâîðåííÿì g ∈ G êðóãà D â ñåáå, äå G � íåñêií÷åíà
öèêëi÷íà êîìóòàòèâíà ãðóïà, ïîðîäæåíà ïåðåòâîðåííÿì g, ç îäíi¹þ àáî äâîìà íåðóõîìèìè
i ãðàíè÷íèìè òî÷êàìè âñiõ çñóâiâ, ùî ëåæàòü íà àáñîëþòi.
Íåõàé, äàëi, A ïîçíà÷à¹ C∗-àëãåáðó áåç çñóâó, ÿêà ïîðîäæåíà îïåðàòîðàìè, ùî ìàþòü

âèãëÿä A = a(z)I+b(z)K+L, äå I � îäèíè÷íèé, L � êîìïàêòíèé, êîåôiöi¹íòè a, b ¹ àâòîìîð-
ôíèìè ôóíêöiÿìè, òîáòî çàäîâîëüíÿþòü óìîâàì a(g(z)) = a(z), b(g(z)) = b(z), íåïåðåðâíèìè
íà ðiìàíîâié ïîâåðõíi ãðóïè.
Âèâ÷à¹òüñÿ C∗-àëãåáðà B, ïîðîäæåíà óñiìà îïåðàòîðàìè âèãëÿäó

B =
+∞∑

j=−∞
AjW

j

äå Aj � îïåðàòîðè àëãåáðè A.
Âèÿâëÿ¹òüñÿ, ùî àëãåáðà B ¹ ðîçøèðåííÿì àëãåáðè A çà äîïîìîãîþ îïåðàòîðiâ çñóâó Wg,

äå g ∈ G. Áóäó¹òüñÿ àëãåáðà ñèìâîëiâ òà âñòàíîâëþ¹òüñÿ êðèòåðié ôðåäãîëüìîâîñòi äëÿ
îïåðàòîðiâ C∗-àëãåáðè B.
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Êàíîíi÷íi êâàçi-ãåîäåçè÷íi âiäîáðàæåííÿ
ïñåâäî-ðiìàíîâèõ ïðîñòîðiâ ç ðåêóðåíòíî-ïàðàáîëi÷íîþ

ñòðóêòóðîþ

Ïiñòðóië Ì.I.

(ÎÍÓ, Îäåñà, Óêðà¨íà)
E-mail: margaret.pistruil@gmail.com

Êóðáàòîâà I.Ì.

(ÎÍÓ, Îäåñà, Óêðà¨íà)
E-mail: irina.kurbatova27@gmail.com

Â [3] ìè äîñëiäæóâàëè äèôåîìîðôiçìè ïñåâäî-ðiìàíîâèõ ïðîñòîðiâ, ÿêi ¹ êâàçi-ãåîäåçè÷íèìè
âiäîáðàæåííÿìè [1] i âîäíî÷àñ ìàéæå-ãåîäåçè÷íèìè 2-ãî òèïó [2]. Îñíîâíi ðiâíÿííÿ òàêîãî
âiäîáðàæåííÿ (Vn, gij, F

h
i ) i (V n, gij) â ñóìiñíié çà âiäîáðàæåííÿì ñèñòåìi êîîðäèíàò (xi) ìà-

þòü âèãëÿä [3]

Γ
h

ij(x) = Γhij(x) + ψ(i(x)δhj) + φ(i(x)F h
j)(x),

Fij = −Fji, Fij = giαF
α
j , F ij = −F ji, F ij = giαF

α
j ,

F h
αF

α
i = 0

F h
(i,j) = F h

(iqj),

äå Γ
h

ij,Γ
h
ij - êîìïîíåíòè îá'¹êòiâ çâ'ÿçíîñòi V n i Vn, ψi, ϕi - äåÿêi êîâåêòîðè; ”,” - çíàê êîâà-

ðiàíòíî¨ ïîõiäíî¨ â Vn.
Àôiíîðíó ñòðóêòóðó, äëÿ ÿêî¨ äèôåðåíöiàëüíi ðiâíÿííÿ íàáóâàþòü âèãëÿäó F h

(i,j) = F h
(iqj),

ìè íàçèâà¹ìî óçàãàëüíåíî-ðåêóðåíòíîþ, à ïðè F h
i,j = F h

i qj - ðåêóðåíòíî-ïàðàáîëi÷íîþ.
Ó âèïàäêó, êîëè â îñíîâíèõ ðiâíÿííÿõ êâàçi-ãåîäåçè÷íîãî âiäîáðàæåííÿ ψi(x) = 0, éîãî

íàçèâàþòü êàíîíi÷íèì.
Îòðèìàíà ëiíiéíà ôîðìà îñíîâíèõ ðiâíÿíü êàíîíi÷íèõ êâàçi-ãåîäåçè÷íèõ âiäîáðàæåíü

ðåêóðåíòíî-ïàðàáîëi÷íèõ ïðîñòîðiâ. Ç ¨¨ äîïîìîãîþ äîâåäåíi îñíîâíi òåîðåìè òåîði¨ êàíî-
íi÷íèõ êâàçi-ãåîäåçè÷íèõ âiäîáðàæåíü ðåêóðåíòíî-ïàðàáîëi÷íèõ ïðîñòîðiâ, ÿêi äàþòü çìîãó
äëÿ áóäü-ÿêîãî ïñåâäî-ðiìàíîâîãî ïðîñòîðó (Vn, gij, F

h
i ) ç ðåêóðåíòíî-ïàðàáîëi÷íîþ àôiíîð-

íîþ ñòðóêòóðîþ îäíîçíà÷íî âiäïîâiñòè íà ïèòàííÿ, äîïóñêà¹ âií ðîçãëÿäóâàíå âiäîáðàæåííÿ
÷è íi.
Äàëi ðîçãëÿíóòî êàíîíi÷íå êâàçi-ãåîäåçè÷íå âiäîáðàæåííÿ ðåêóðåíòíî-ïàðàáîëi÷íîãî ïðî-

ñòîðó (Vn, gij, F
h
i ) íà ïîëóñèìåòðè÷íèé ïðîñòið V n, îòæå òåçîð Ðiìàíà V n çàäîâîëüíÿ¹ óìî-

âàì

R
h

ijk|[lm] = 0,

äå ”|” - çíàê êîâàðiàíòíî¨ ïîõiäíî¨ â V n.
Äîâåäåíà

Òåîðåìà 1. ßêùî ðåêóðåíòíî-ïàðàáîëi÷íèé ïðîñòið (Vn, gij, F
h
i ) äîïóñêà¹ íåòðèâiàëüíå êà-

íîíi÷íå êâàçi-ãåîäåçè÷íå âiäîáðàæåííÿ íà ïîëóñèìåòðè÷íèé V n, òî âèêîíó¹òüñÿ ïðèíàéì-
íi îäíà ç óìîâ: ϕi,j = aFij − ϕiqj àáî RiαF

α
j = bFij, ïðè äåÿêèõ iíâàiàíòàõ a, b.
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Ãåîìåòðiÿ íàáëèæåííÿ äëÿ ïðîñòîðó àôiííî¨ çâ'ÿçíîñòi

Ïîêàñü Ñåðãié Ìèõàéëîâè÷

(Îäåñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi I. I. Ìå÷íèêîâà, Îäåñà, Óêðà¨íà)
E-mail: pokas@onu.edu.ua

Íiêîëàé÷óê Àííà Îëåêñàíäðiâíà

(Îäåñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi I. I. Ìå÷íèêîâà, Îäåñà, Óêðà¨íà)
E-mail: nickolaychuck@stud.onu.edu.ua

Ðîçãëÿíåìî ïðîñòið àôiííî¨ çâ'ÿçíîñòi áåç ñêðóòó An, âiäíåñåíèé äî äîâiëüíî¨ ñèñòåìè êî-
îðäèíàò {x1, x2, . . . , xn}, ç îá'¹êòîì çâ'ÿçíîñòi Γhij(x);M0(xh0)�ôiêñîâàíà òî÷êà öüîãî ïðîñòî-
ðó. Ïîáóäó¹ìî íîâèé ïðîñòið Ãn, âiäíåñåíèé äî êîîðäèíàò {y1, y2, . . . , yn}, çi ñâî¨ì îá'¹êòîì
çâ'ÿçíîñòi Γ̃hij(y), ÿêèé çàäà¹òüñÿ ñïiââiäíîøåííÿì

Γ̃hij(y) = −1

3
R
0

h
.(ij)l y

l, äå R
0

h
.ijl = Rh

.ijl(M0). (1)

ßêùî ñèñòåìà êîîðäèíàò ó âèõiäíîìó ïðîñòîði An ¹ êàíîíi÷íîþ ç ïî÷àòêîì ó òî÷öi M0,
òî îá'¹êò çâ'ÿçíîñòi Γ̃hij ðåàëiçó¹ íàáëèæåííÿ ïåðøîãî ïîðÿäêó äëÿ Γhij âèõiäíîãî ïðîñòîðó i
òîìó âiäîáðàæà¹ ãåîìåòðè÷íi âëàñòèâîñòi An ç äåÿêèì ñòóïåíåì òî÷íîñòi [1, 4].
Âèâ÷àþòüñÿ äåÿêi âëàñòèâîñòi ïðîñòîðó Ãn. Çîêðåìà, äîâåäåíî, ùî ñèñòåìà êîîðäèíàò
{y1, y2, . . . , yn} ¹ ðiìàíîâîþ ç ïî÷àòêîì ó òî÷öi M0.
Íàäàëi ðîçãëÿäàþòüñÿ àíàëiòè÷íi iíôiíiòåçèìàëüíi ðóõè â ïðîñòîði Ãn

y′h = yh + ξ̃h(y) δt, äå ξ̃h(y)� âåêòîð çìiùåííÿ. (2)

Êîìïîíåíòè âåêòîðà ξ̃h(y) øóêàþòüñÿ ó âèãëÿäi ñòåïåíåâèõ ðÿäiâ.

ξ̃h(y) ≡ ah +
∞∑

k=1

ah
k

= ah +
∞∑

k=1

ahl1l2...lky
l1yl2 . . . ylk , äå ah, ahl1l2...lk�êîíñòàíòè. (3)

Ïðè äîñëiäæåííi îñíîâíèõ ðiâíÿíü [2, 3]

Lξ̃Γ̃
h
ij(y) ≡ ∂2ξ̃h

∂yi∂yj
+ ξ̃α

∂Γ̃hij
∂yα

+
∂ξ̃α

∂yi
Γ̃hαj +

∂ξ̃α

∂yj
Γ̃hαi −

∂ξ̃h

∂yα
Γ̃αij = 0 (4)

ó ÿâíîìó âèãëÿäi çíàéäåíî âåêòîð ξ̃h(y):

ξ̃h(y) =
∞∑

k=0

(−1)k+1

k!(2k − 1)
aαt(k)h

α , äå (5)

tij =
1

3
R
0

i
.l1l2j

yl1yl2 , t
(p)i
j = t(p−1)i

α tαj (p = 2, 3, . . .). (6)

Äîâåäåíà àáñîëþòíà òà ðiâíîìiðíà çáiæíiñòü öèõ ðÿäiâ ó äåÿêié îáëàñòi. Âèâ÷à¹òüñÿ ïèòàííÿ
ïðî ïîðÿäîê ãðóïè Ëi ðîçãëÿíóòèõ ðóõiâ.
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Ïðî 3F-ïëàíàðíi âiäîáðàæåííÿ ïñåâäî-ðiìàíîâèõ
ïðîñòîðiâ

Àíäðié Ñîëîâéîâ

(ÎÍÓ, Îäåñà, Óêðà¨íà)
E-mail: andrey-solovyov@stud.onu.edu.ua

Iðèíà Êóðáàòîâà

(ÎÍÓ, Îäåñà, Óêðà¨íà)
E-mail: irina.kurbatova27@gmail.com

Þëiÿ Õàáàðîâà

(ÎÍÓ, Îäåñà, Óêðà¨íà)
E-mail: yulia-habarova@stud.onu.edu.ua

Äîñëiäæóþ÷è ìàéæå êîíòàêòíi ìíîãîâèäè, Ê.ßíî, Ñ.Õîó i Â.×åí [1] äiéøëè äî ïîíÿòòÿ
êâàäðèñòðóêòóðè, ñòðóêòóðíèé àôiíîð ÿêî¨ çàäîâîëüíÿ¹ ðiâíÿííþ φ4 ± φ2 = 0.

Ìè âèâ÷à¹ìî 3F-ïëàíàðíi âiäîáðàæåííÿ [2] ïñåâäî-ðiìàíîâèõ ïðîñòîðiâ (Vn, gij, F
h
i ) i (V n, gij, F

h

i )
ç àôiíîðíîþ ñòðóêòóðîþ ïåâíîãî âèäó, îñíîâíi ðiíÿííÿ ÿêèõ â çàãàëüíié çà âiäîáðàæåííÿì
ñèñòåìi êîîðäèíàò (xi) ìàþòü âèãëÿä:

Γ
h

ij(x) = Γhij(x) +
3∑

s=0

s
q(i(x)

s

F h
j)(x),

äå
◦
F h
i = δhi ,

1

F h
i = F h

i ,
2

F h
i =

1

Fα
i

1

F h
α ,

3

F h
i =

2

Fα
i

1

F h
α ,

s

F h
i (x) =

s

F
h

i (x),

F h
αF

α
β F

β
δ F

δ
i + F h

αF
α
i = 0, giαF

α
j = −gjαFα

i , F h
i,j = F h

i|j = 0,

Γhij, Γ
h

ij - êîìïîíåíòè îá'¹êòiâ çâ'ÿçíîñòi Vn i V n, âiäïîâiäíî;
s
qi(x) - äåÿêi êîâåêòîðè; F h

i -
àôiíîð; <,>, < | > - çíàêè êîâàðiàíòíî¨ ïîõiäíî¨ â Vn i V n.
Ìè äîâåëè, ùî çà òàêèõ óìîâ íà àôiíîð ïðîñòîðè Vn i V n ¹ ëîêàëüíî çâåäåíèìè i ìàþòü

âèãëÿä äîáóòêó
Vn = Vm × Vn−m, V n = V m × V n−m,

äî òîãî æ íà êîìïîíåíòàõ öüîãî äîáóòêó 3F-ïëàíàðíå âiäîáðàæåííÿ f : Vn −→ V n iíäóêó¹ F-
ïëàíàðíå âiäîáðàæåííÿ [3] f1 : Vm −→ V m ïàðàáîëi÷íî êåëåðîâèõ ïðîñòîðiâ [3] i F-ïëàíàðíå
âiäîáðàæåííÿ f2 : Vn−m −→ V n−m åëiïòè÷íî êåëåðîâèõ ïðîñòîðiâ [3].
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Ðîçãëÿäà¹òüñÿ ñèñòåìà íåëiíiéíèõ ðiçíèöåâî-ôóíêöiîíàëüíèõ ðiâíÿíü âèãëÿäó

x (qt) = Λx (t) + f (t, x (t+ 1)) , (1)

ó âèïàäêó, êîëè âèêîíóþòüñÿ íàñòóïíi óìîâè:

(1) Λ - äiéñíà (n× n)-ìàòðèöÿ âèãëÿäó Λ = diag (Λ1,Λ2), äå Λ1,Λ2 - äiéñíi (p× p) òà
(r × r)-ìàòðèöi (p+ r = n), det Λ 6= 0. f : R× Rn → Rn,
f (t, x (t+ 1)) = (f 1 (t, x1 (t+ 1) , x2 (t+ 1)) , f 2 (t, x1 (t+ 1) , x2 (t+ 1))) , q - äåÿêà

äiéñíà äîäàòíà ñòàëà.
(2)

|f 1 (t, x̄1, x̄2)− f 1 (t, ¯̄x1, ¯̄x2)| ≤ l1 (|x̄1 − ¯̄x1|+ |x̄2 − ¯̄x2|) ,
|f 2 (t, x̄1, x̄2)− f 2 (t, ¯̄x1, ¯̄x2)| ≤ l2 (|x̄1 − ¯̄x1|+ |x̄2 − ¯̄x2|) ,

äå l1, l2 - äåÿêi äîäàòíi ñòàëi, ùî çàëåæàòü âiä l(l1 = l1 (l) , l2 = l2 (l) , l1 → 0, l2 → 0 ïðè l→ 0).
Òîäi ñèñòåìà ðiâíÿíü (1) çàïèøåòüñÿ ó âèãëÿäi

{
x1 (qt) = Λ1x

1 (t) + f 1 (t, x1 (t+ 1) , x2 (t+ 1)) ,
x2 (qt) = Λ2x

2 (t) + f 2 (t, x1 (t+ 1) , x2 (t+ 1)) ,
(2)

äå x1 = (x1, ..., xp) , x
2 = (xp+1, ..., xp+r) , f

1 = (f1, ..., fp) , f
2 = (fp+1, ..., fp+r) .

Áîãäàí Ôåùåíêî, [09.05.2022 15:04] Âèêîíàâøè â (2) âçà¹ìíî-îäíîçíà÷íó çàìiíó çìiííèõ

x1 (t) = y1 (t) + γ̃1 (t) ,
x2 (t) = y2 (t) + γ̃2 (t),

äå γ (t) = (γ̃1 (t) , γ̃2 (t)) - íåïåðåðâíèé îáìåæåíèé ðîçâ'ÿçîê ñèñòåìè (2), îòðèìà¹ìî ñèñòåìó
ðiâíÿíü {

y1 (qt) = Λ1y
1 (t) + F 1 (t, y1 (t+ 1) , y2 (t+ 1)) ,

y2 (qt) = Λ2y
2 (t) + F 2 (t, y1 (t+ 1) , y2 (t+ 1)) .

(3)

Âåêòîð-ôóíêöi¨ F 1 (t, y1, y2) , F 2 (t, y1, y2) çàäîâîëüíÿþòü óìîâi 2. i F 1 (t, 0, 0) ≡ 0, F 2 (t, 0, 0) ≡
0. Äëÿ ñèñòåìè (3) äîâåäåíà íàñòóïíà òåîðåìà.
Òåîðåìà. Íåõàé âèêîíóþòüñÿ óìîâè 1-2 i óìîâè:
3. 0 < λi < 1 < λj, i = 1, 2, . . . p, j = p+ 1, 2, . . . n, 0 ≤ p ≤ n, q > 1;
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4. θ = max
{

2l1
1−λ∗ ,

2l2
λ∗−1

}
< 1, äå 1 > λ∗ > max {λi, i = 1, . . . , p}, 1 < λ∗ < min {λi, i = p+ 1, . . . , n}.

Òîäi ñèñòåìà ðiâíÿíü (3) ìà¹ ñiì'þ íåïåðåðâíèõ îáìåæåíèõ ïðè t ≥ T > 0 (Ò - äåÿêà äî-
ñòàòíüî âåëèêà äîäàòíà ñòàëà) ðîçâ'ÿçêiâ ó âèãëÿäi ðÿäiâ

y1(t) =
∞∑

i=0

y1
i (t), y

2(t) =
∞∑

i=0

y2
i (t),

äå y1
i (t), y

2
i (t), i = 0, 1, ... - äåÿêi íåïåðåðâíi îáìåæåíi ïðè t ≥ T > 0 âåêòîð-ôóíêöi¨.
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Ìè âèâ÷à¹ìî F-ïëàíàðíi âiäîáðàæåííÿ (ïñåâäî-)ðiìàíîâèõ ïðîñòîðiâ ç àôiíîðíîþ ñòðó-
êòóðîþ ïåâíîãî òèïó ([2]).
Â ðiìàíîâîìó ïðîñòîði (Vn, gij) àôiíîð F h

j âèçíà÷à¹ ñèìïëåêòè÷íó ñòðóêòóðó([3]), ÿêùî
ïîëå òåíçîðà òèïó (0, 2) Fij = Fα

j gαi çàäîâîëüíÿ¹ óìîâàì:

Fij,k + Fjk,i + Fki,j = 0, Fij + Fji = 0, Fij = Fα
j gαi, |F h

i | 6= 0,

äå çíàê êîâàðiàíòíî¨ ïîõiäíî¨ â ïðîñòîði Sn.
Ìû îáèðà¹ìî ñòðóêòóðó áiëüø çàãàëüíîãî òèïó, âiäìîâëÿþ÷èñü âiä âèìîãè íåâèðîæäåíîñòi

àôiíîðà. Áóäåìî íàçèâàòè ¨¨ ìàéæå ñèìïëåêòè÷íîþ, à (ïñåâäî-)ðiìàíîâèé ïðîñòið ç òàêîþ
ñòðóêòóðîþ - ìàéæå ñèìïëåêòè÷íèì.
Äàëi ìè äîñëiäæó¹ìî F -ïëàíàðíi âiäîáðàæåííÿ ïñåâäî-ðiìàíîâèõ ïðîñòîðiâ Vn i V n â

ïðèïóùåííi, ÷òî àôiíîð F âèçíà÷à¹ ìàéæå ñèìïëåêòè÷íó ñòðóêòóðó íà Vn i V n. �õ îñíîâíi
ðiâíÿííÿ ìàþòü âèãëÿä

Γ
h

ij(x) = Γhij(x) + ψ(i(x)δhj)(x) + ϕ(i(x)F h
j)(x),

äå Γ
h

ij,Γ
h
ij - êîìïîíåíòè îá'¹êòiâ çâ'ÿçíîñòi V n i Vn, ψi, ϕi - äåÿêi êîâåêòîðè. Äîâåäåíà

Òåîðåìà 1. Ìàéæå ñèìïëåêòè÷íèé ïðîñòið (Vn, gij) äîïóñêà¹ íåòðèâiàëüíå F-ïëàíàðíå
âiäîáðàæåííÿ òîäi i òiëüêè òîäi, êîëè â íüîìó iñíó¹ íåîñîáëèâèé ñèìåòðè÷íèé òåíçîð aij
òèïó (0,2), ÿêèé çàäîâîëüíÿ¹ äèôåðåíöiàëüíèì ðiâíÿííÿì

aij,k = − 1
ϕαF

α
i gjk −

1
ϕαF

α
j gik −

1
ϕiFjk −

1
ϕjFik,

Fα
i aαj = −Fα

j aαi

ïðè äåÿêîìó âåêòîði ϕ1
i 6= 0.

Äàëi çà äîïîìîãîþ aij ìè îòðèìó¹ìî iíâàðiàíòíå ïåðåòâîðåííÿ([4]) , ÿêå ïàðó ìàéæå
ñèìïëåêòè÷íèõ ïðîñòîðiâ, ùî çíàõîäÿòüñÿ â íåòðèâiàëüíîìó F -ïëàíàðíîìó âiäîáðàæåííi,
ïåðåòâîðþ¹ â íîâó ïàðó ìàéæå ñèìïëåêòè÷íèõ ïðîñòîðiâ, ùî òàêîæ çíàõîäÿòüñÿ â íåòðèâè-
àëüíîìó F -ïëàíàðíîìó âiäîáðàæåííi, àëå âiäïîâiäàþ÷îìó iíøîìó àôiíîðó:

Γ
(
g, g, ϕ, F

)
:
(
Sn

ϕ,F7−→Sn
)
7−→

( 1

Sn
ϕ1,F 1

7−→
1

Sn
)
.

Çàâäÿêè öüîìó ç'ÿâèëàñÿ ìîæëèâiñòü îòðèìàííÿ âåëèêî¨ êiëüêîñòi ïðèêëàäiâ ïàð ìàéæå
ñèìïëåêòè÷íèõ ïðîñòîðiâ, ÿêi çíàõîäÿòüñÿ â F-ïëàíàðíîìó âiäîáðàæåííi.
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