EXTREMAL PROBLEM FOR NON-OVERLAPPING DOMAINS WITH FREE POLES

Liudmyla Vyhivska (Kyiv, Ukraine) *E-mail:* liudmylavyhivska@ukr.net

Let \mathbb{N} and \mathbb{R} be the sets of natural and real numbers, respectively, \mathbb{C} be the complex plane, $\overline{\mathbb{C}} = \mathbb{C} \bigcup \{\infty\}$ be the Riemann sphere, and r(B, a) be the inner radius of the domain $B \in \overline{\mathbb{C}}$ with respect to the point $a \in B$.

Consider the following problem which was formulated in 1994 [1].

Problem 1. Consider the product

$$I_n(\gamma) = r^{\gamma} \left(B_0, 0 \right) \prod_{k=1}^n r \left(B_k, a_k \right),$$

where B_0 , $B_1,...,B_n$ $(n \ge 2)$ are pairwise non-overlapping domains in $\overline{\mathbb{C}}$ and $a_0 = 0$ and $|a_k| = 1$ for $k = \overline{1, n}$, and $0 < \gamma \leq n$. Show that it attains its maximum at a configuration of domains B_k and points a_k possessing rotational *n*-symmetry.

This problem has a solution only if $\gamma \leq n$ as soon as $\gamma = n + \epsilon, \epsilon > 0$, the problem has no solution. Currently it still unsolved in general, only partial results are known [2].

The following theorem holds [3].

Theorem 2. Let $n \in \mathbb{N}$ and $n \geq 2$. Then for any $\beta \in (0; \frac{1}{2}]$ there exists $n_0(\beta)$ such that for all $n \geq n_0(\beta)$ and for all $\gamma \in (1, n^\beta]$ and for any different points of a unit circle and for any different system of non-overlapping domains B_k , such that $a_k \in B_k \subset \overline{\mathbb{C}}$ for $k = \overline{1, n}$, and $a_0 = 0 \in B_0 \subset \overline{\mathbb{C}}$, the following inequality holds

$$r^{\gamma}(B_{0},0)\prod_{k=1}^{n}r(B_{k},a_{k}) \leqslant \left(\frac{4}{n}\right)^{n}\frac{\left(\frac{4\gamma}{n^{2}}\right)^{\frac{1}{n}}}{\left(1-\frac{\gamma}{n^{2}}\right)^{n+\frac{\gamma}{n}}}\left(\frac{1-\frac{\sqrt{\gamma}}{n}}{1+\frac{\sqrt{\gamma}}{n}}\right)^{2\sqrt{\gamma}}.$$
(1)

Equality is attained if a_k and B_k for $k = \overline{0, n}$, are, respectively, poles and circular domains of the quadratic differential

$$Q(w)dw^{2} = -\frac{(n^{2} - \gamma)w^{n} + \gamma}{w^{2}(w^{n} - 1)^{2}} dw^{2}.$$

References

- Vladimir Dubinin. Symmetrization in the geometric theory of functions of a complex variable. Russian Mathematical Surveys, 49(1): 1-79, 1994.
- [2] Alexandr Bakhtin, Galina Bakhtina, Yurii Zelinskii. Topological-algebraic structures and geometric methods in complex analysis, volume 73 of In Proceedings of the Institute of Mathematics of NAS of Ukraine. Kyiv: Institute of Mathematics of NAS of Ukraine, 2008.
- [3] Alexandr Bakhtin, Liudmyla Vyhivska. Problem on extremal decomposition of the complex plane with free poles. Journal of Mathematical Sciences, 248(2): 145-165, 2020.