CONFORMAL MAPPINGS IN HARDY-TYPE SPACES

Volodymyr Dilnyi (Drohobych State Pedagogical University) *E-mail:* dilnyi@ukr.net

Andriana Vinskovska

(Drohobych State Pedagogical University) *E-mail:* andriankav1112@gmail.com

Let $H^p(\mathbb{C}_+), 1 \leq p < +\infty$, [1] be the Hardy space of analytic in the half-plane $\mathbb{C}_+ = \{z : \Re z > 0\}$ functions, for which

$$\| f \| = \sup_{x>0} \left\{ \int_{-\infty}^{+\infty} |f(x+iy)|^p dy \right\}^{1/p} < +\infty.$$

Let $D_{\sigma} = \{z : \Re z < 0, |\Im z| < \sigma\}, D_{\sigma}^* = \mathbb{C} \setminus \overline{D}_{\sigma}, \sigma > 0.$

Definition 1. Let $E^p(D_{\sigma})$ and $E^p(D_{\sigma}^*)$, $1 \leq p < +\infty, \sigma > 0$, be the spaces of analytic functions in the domains D_{σ} and D_{σ}^* respectively, for which

$$\sup\left\{\int_{\gamma} |f(z)|^p |dz|\right\}^{1/p} < +\infty,$$

where supremum is taken over all segments γ , that are contained in D_{σ} and D_{σ}^* respectively.

We consider the properties of functions in the half-strip D_{σ} and in the exterior of half-strip D_{σ}^* . In [2] considered spaces $E^p(D_{\sigma})$ and $E^p(D_{\sigma}^*)$ as spaces of signals. We propose a common point of view on $E^p(D_{\sigma})$ and $E^p(D_{\sigma}^*)$.

Theorem 2. Function f belongs to $E^2(D^*_{\sigma})$ if and only if, when the function

$$F(w) = f\left(-w + \frac{2\sigma i}{\pi}\cos\frac{w\pi i}{2\sigma}\right)\sqrt{-1 + \sin\frac{w\pi i}{2\sigma}}$$

where $\sqrt{1} = 1$, belongs to $E^2(D_{\sigma})$.

The proof of the theorem is based on the following lemma.

Lemma 3. Function

$$\tilde{w} = -w + \frac{2\sigma i}{\pi} \cos \frac{w\pi i}{2\sigma}$$

comformally maps D_{σ} into D_{σ}^* .

References

 Koosis, P.: Introduction to H^p spaces, Second edition. Cambridge Tracts in Mathematics. 115, Cambridge: Cambridge University Press, UK (1998).

^[2] Dilnyi V., Huk K. Identification of Unknown Filter in a Half-Strip. Acta Applicandae Mathematicae. 2020. Vol.165. P.199-205.