THE TERENCE TAO SET AND THE COLLATZ CONJECTURE

Jorge Vielma

(ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.)

E-mail: jevielma@espol.edu.ec

Angel Guale

(ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.)

E-mail: adguale@espol.edu.ec

The Collatz conjecture is an open problem in number theory stablished in 1937 by Lothar Collatz and can be stated as follows: If $f : \mathbb{N} \to \mathbb{N}$ is the function define by:

$$f(n) = \begin{cases} \frac{n}{2} & ;n \text{ is even} \\ 3n+1 & ;n \text{ is odd} \end{cases}$$

the conjecture says that given $n \in \mathbb{N}$, there exists k > 0 such that $f^{(k)}(n) = 1$ and the only orbit is $\{1, 2, 4\}$

In 2019, Terence Tao showed, in the context of the Collatz conjecture, that almost all $n \in \mathbb{N}$ belong to the set $W = \{n \in \mathbb{N} : \min(O(n)) < f(n)\}$. In this paper we prove that the Collatz conjecture is true if and only if the set W is connected in N with the primal topology τ_f , where τ_f is the topology on N given by the open sets as those subset θ of N such that $f^{-1}(\theta) \subset \theta$.

References

- Angel Guale, Fernando Mejías, Jorge Vielma. Paths in primal space and the Collatz conjecture. Quaestiones Mathematicae, 1-7, 2020.
- [2] Jorge Vielma, Angel Guale. A topological approach to the Ulam-Kakutani-Collatz conjecture. Topology and its Applications, 256: 1-6, 2019.
- [3] Othman Echi. The categories of flows of Set and Top. Topology and its Applications, 159(9): 2357-2366, 2012.
- [4] Terence Tao. Almost all orbits of the Collatz map attain almost bounded values. Preprint, 2019.