MAXIMAL DISTANCE MINIMIZERS. EXAMPLES AND PROPERTIES

Yana Teplitskaya

(SPbSU, Department of Mathematics and Computer Science) *E-mail:* janejashka@gmail.com

I will talk about the sets which have the minimal length over the class of closed connected sets $\Sigma \subset \mathbb{R}^2$ satisfying the inequality $\max_{y \in M} \operatorname{dist}(y, \Sigma) \leq r$ for a given compact set $M \subset \mathbb{R}^2$ and some given r > 0.

For a given compact set $M \subset \mathbb{R}^2$ consider the functional

$$F_M(\Sigma) := \sup_{y \in M} \operatorname{dist}(y, \Sigma),$$

where Σ is a closed subset of \mathbb{R}^2 and dist (y, Σ) stands for the Euclidean distance between y and Σ . Consider the class of closed connected sets $\Sigma \subset \mathbb{R}^2$ satisfying $F_M(\Sigma) \leq r$ for some r > 0. We are interested in the sets of the minimal length (one-dimensional Hausdorff measure) $\mathcal{H}^1(\Sigma)$ over the mentioned class (*minimizers*).

It is known that for all r > 0 the set of minimizers is nonempty. It is proven also that for each minimizer of positive length the equality $F_M(\Sigma) = r$ holds. Furthermore the set of minimizers coincides with the set of solutions of the dual problem: minimize F_M over all closed connected sets $\Sigma \subset \mathbb{R}^2$ with prescribed bound on the total length $\mathcal{H}^1(\Sigma) \leq l$.

In [1] (for the plane) and in [2] (for the general case) some properties of minimizers have been proven:

- (a) A minimizer cannot contain loops (homeomorphic images of circles).
- (b) For every point $x \in \Sigma$ one of two statements is true:
 - i there exists a point $y \in M$ (may be not unique) such that dist (x, y) = r and $B_r(y) \cap \Sigma = \emptyset$;
 - ii there exists an $\varepsilon > 0$ such that $S_{\Sigma} \cap B_{\varepsilon}(x)$ is either a segment or a regular tripod, i.e. the union of three segments with an endpoint in x and relative angles of $2\pi/3$.

The minimizers for some sets M are known (see pictures) although usually this is not an easy task. Recently (see [3]) at the plane the regularity of minimizers was proved.

Theorem 1. Let Σ be a maximal distance minimizer for a compact set $M \subset \mathbb{R}^2$. Then

- (i) Σ is a union of a finite number of arcs (injective images of the segment [0; 1]).
- (ii) The angle between each pair of tangent rays at every point of Σ is greater or equal to 2π/3. The number of tangent rays at every point of Σ is not greater than 3. If it is equal to 3, then there exists such a neighbourhood of x that the arcs in it coincide with line segments.

References

- Miranda, Jr., M. and Paolini, E. and Stepanov, E., On one-dimensional continua uniformly approximating planar sets. Volume 27 of Calculus of Variations and Partial Differential Equations, 2006.
- [2] Paolini, E. and Stepanov, E., Qualitative properties of maximum distance minimizers and average distance minimizers in \mathbb{R}^n , volume 122 of Journal of Mathematical Sciences. New York, 2004.
- [3] Yana Teplitskaya. On regularity of maximal distance minimizers, arXiv preprint arXiv:1910.07630, 2019.

Y. Teplitskaya

FIGURE 1. An example where $M = \partial B_R(O)$, where R > 4.98r.

FIGURE 2. An example where $M := \partial B_r([AG]), \Sigma = [AG].$

FIGURE 3. An example where $M := \{A, B, C\}, \Sigma$ is a tripod.