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The realized in [1] broadening to the noncompact but complete spaces of affine connection the
well-known Hopf-Bochner-Uano techniques ([3], for example) on the grounding the so called vanishing
theorems allowed to broad to the corresponding spaces some well-known theorems of the type of
geodesical unique definability (|2], for example). In particular, it is grounded that the next theorems
take place.

Theorem 1. Complete connected noncompact Riemannian C"-space V™ (n > 2, r > 4) with the
positive defined metric tensor and the Finstein tensor that doesn’t equal to zero identically, that satisfies
the recurrence conditions
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means the corresponding covariant differentiation, doesn’t admit non-trivial (different from the
affine) geodesic mappings in the large.
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Theorem 2. Complete connected noncompact Riemannian C"-space V"' (n > 2, r > 4) with the
positive defined metric tensor and the Einstein tensor that doesn’t equal to zero identically, that satisfies
the recurrence conditions () (f) (o)
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W4 and W4 are some arbitrary tensors, correspondingly of the second and the third valence, doesn’t
admit non-trivial (different from the affine) geodesic mappings in the large.

Examples of the corresponding spaces are given.
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