IW CONTRACTIONS AND THEIR GENERALIZATIONS

Dmytro R. Popovych (Taras Shevchenko National University of Kyiv, Kyiv, Ukraine) *E-mail:* deviuss@gmail.com

Contractions of Lie algebras are a kind of limit processes between orbits of such algebras. In 1953, Inönü and Wigner studied special contractions of Lie algebras as a part of broader study of contractions of Lie groups and their representations. These contractions were generalized by Doebner and Melsheimer in 1967. A rigorous general definition of contractions of Lie algebras was given by Saletan in 1961. He also studied contraction whose matrices are first-order polynomials with respect to contraction parameters. Since then, a number of conjectures about various ways of realizing contractions of Lie algebras had accumulated in the literature.

Definition 1. Let V be an n-dimensional vector space over $\mathbb{F} = \mathbb{C}$ or $\mathbb{F} = \mathbb{R}$, $n < \infty$, and let $\mathcal{L}_n = \mathcal{L}_n(\mathbb{F})$ denote the set of all possible Lie brackets on V. Given $\mu \in \mathcal{L}_n$ and $U \in C((0, 1], GL(V))$, define the family of $\mu_{\varepsilon} \in \mathcal{L}_n$, $\varepsilon \in (0, 1]$, by $\mu_{\varepsilon}(x, y) := U_{\varepsilon}^{-1}\mu(U_{\varepsilon}x, U_{\varepsilon}y) \forall x, y \in V$. If for any $x, y \in V$ there exists the limit $\lim_{\varepsilon \to +0} \mu_{\varepsilon}(x, y) =: \mu_0(x, y)$, then $\mathfrak{g}_0 = (V, \mu_0)$ is a well-defined Lie algebra and is called a *contraction* of the Lie algebra $\mathfrak{g} = (V, \mu)$. The procedure $\mathfrak{g} \to \mathfrak{g}_0$ providing \mathfrak{g}_0 from \mathfrak{g} is also called a *contraction*. If a basis of V is fixed, the parameter matrix $U_{\varepsilon} = U(\varepsilon), \varepsilon \in (0, 1]$, is called the *contraction matrix* of the contraction $\mathfrak{g} \to \mathfrak{g}_0$.

Definition 2. The contraction $\mathfrak{g} \to \mathfrak{g}_0$ is called a Inönü-Wigner (IW) contraction if its matrix U_{ε} can be represented in the form $U_{\varepsilon} = AW_{\varepsilon}P$, where the matrices A and P are nonsingular and constant (i.e., they do not depend on ε) and $W_{\varepsilon} = \text{diag}(\varepsilon^{\alpha_1}, \ldots, \varepsilon^{\alpha_n})$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$. The *n*-tuple of exponents $(\alpha_1, \ldots, \alpha_n)$ is called the *signature* of the generalized IW-contraction $\mathfrak{g} \to \mathfrak{g}_0$. A simple *IW-contraction* is a generalized IW-contraction with signature consisting of zeros and ones.

The following assertion, which stood as a conjecture for a long time, was proved in [5].

Theorem 3. Any generalized IW-contraction is equivalent to a generalized IW-contraction with an integer signature (and the same associated constant matrices).

One of these conjectures was that any contraction of Lie algebras can be realized as a generalized IW-contraction. This is true for contractions between three-dimensional real or complex Lie algebras. Consider four-dimensional real Lie algebras defined, up to antisymmetry of Lie bracket, by the following nonzero commutation relations:

$$\begin{aligned} 2A_{2.1}: & [e_1, e_2] = e_1, \ [e_3, e_4] = e_3; \\ A_1 \oplus A_{3.2}: & [e_2, e_4] = e_2, \ [e_3, e_4] = e_2 + e_3; \\ A_{4.1}: & [e_2, e_4] = e_1, \ [e_3, e_4] = e_2; \\ A_{4.10}: & [e_1, e_3] = e_1, \ [e_2, e_3] = e_2, \ [e_1, e_4] = -e_2, \ [e_2, e_4] = e_1. \end{aligned}$$

Hereafter we use the Mubarakzyanov's nomenclature for low-dimensional Lie algebras, and \mathfrak{g}_{\dots} denotes the complexification of the algebra A_{\dots} . All contractions of four-dimensional real Lie algebras were realized in [1, 2] via generalized IW-contractions except two contractions, $2A_{2.1} \rightarrow A_1 \oplus A_{3.2}$ and $A_{4.10} \rightarrow A_1 \oplus A_{3.2}$. Since the complexifications of the algebras $2A_{2.1}$ and $A_{4.10}$ are isomorphic, there was only one exception for the complex case, $2\mathfrak{g}_{2.1} \rightarrow \mathfrak{g}_1 \oplus \mathfrak{g}_{3.2}$.

Theorem 4 ([4]). (i) There exists a unique contraction between four-dimensional complex Lie algebras, $2\mathfrak{g}_{2.1} \rightarrow \mathfrak{g}_1 \oplus \mathfrak{g}_{3.2}$, that is not equivalent to a generalized IW-contraction.

(ii) Precisely two contractions between four-dimensional real Lie algebras, $2A_{2.1} \rightarrow A_1 \oplus A_{3.2}$ and $A_{4.10} \rightarrow A_1 \oplus A_{3.2}$, cannot be realized as generalized IW-contractions.

Combining the results of [1, 2, 4] also yields the following assertion.

Theorem 5 ([4]). Any generalized IW-contraction between four-dimensional complex (resp. real) Lie algebras is equivalent to one with parameter exponents in $\{0, 1, 2, 3\}$. The exponents in $\{0, 1, 2\}$ suffice for all such contractions except $2A_{2,1} \rightarrow A_{4,1}$, $A_{4,10} \rightarrow A_{4,1}$ and $so(3) \oplus A_1 \rightarrow A_{4,1}$ in the real case and $2\mathfrak{g}_{2,1} \rightarrow \mathfrak{g}_{4,1}$ in the complex case, where the minimal tuple of exponents is (3, 2, 1, 1).

Definition 6. The contraction $\mathfrak{g} \to \mathfrak{g}_0$ is called *diagonal* if its matrix U_{ε} can be represented in the form $U_{\varepsilon} = AW_{\varepsilon}P$, where A and P are constant nonsingular matrices and $W_{\varepsilon} = \operatorname{diag}(f_1(\varepsilon), \ldots, f_n(\varepsilon))$ for some continuous functions $f_i: (0, 1] \to \mathbb{F} \setminus \{0\}$.

Theorem 7 ([5]). Any diagonal contraction is equivalent to a generalized IW-contraction with an integer signature.

Consider the *n*-dimensional $(n \ge 5)$ solvable real Lie algebras $\mathfrak{a} := A_{5.38} \oplus (n-5)A_1$ and $\mathfrak{a}_0 := A_{2.1} \oplus A_{2.1} \oplus (n-4)A_1$ whose nonzero commutation relations are exhausted, up to antisymmetry of Lie bracket, by the following:

 \mathfrak{a} : $[e_1, e_3] = e_3$, $[e_2, e_4] = e_4$, $[e_1, e_2] = e_5$, \mathfrak{a}_0 : $[e_1, e_3] = e_3$, $[e_2, e_4] = e_4$.

Theorem 8 ([3]). The Euclidean norm of any contraction matrix that realizes the contraction of the algebra \mathfrak{a} to the algebra \mathfrak{a}_0 approaches infinity at the limit point. The same is true for the complex counterpart of this contraction.

Definition 9. A realization of a contraction with a matrix-function that is linear in the contraction parameter is called a *Saletan (linear) contraction*.

Theorem 10 ([6]). Up replacing the algebras \mathfrak{g} and \mathfrak{g}_0 with isomorphic ones, every Saletan contraction $\mathfrak{g} \to \mathfrak{g}_0$ is realized by a matrix of the canonical form

 $E^{n_0} \oplus J^{n_1}_{\varepsilon} \oplus \cdots \oplus J^{n_s}_{\varepsilon}, \quad or, \ equivalently, \quad E^{n_0} \oplus J^{n_1}_0 \oplus \cdots \oplus J^{n_s}_0 + \varepsilon E^n,$

where $n_0 + \cdots + n_s = n$, E^m is the $m \times m$ identity matrix, and J^m_{λ} denotes the $m \times m$ Jordan block with an eigenvalue λ .

Hence any Saletan contraction can be realized by a matrix of the form $AS_{\varepsilon}B$, where A and B are constant nonsingular matrices and the matrix-valued function S_{ε} is in the above canonical form. The tuple $(n_0; n_1, \ldots, n_s)$, where n_1, \ldots, n_s constitute a partition of the dimension $n - n_0$ of the Fitting null component relative to U_0 and $n_0 \in \{0, \ldots, n\}$, is called the *signature* of this Saletan contraction.

References

- Maryna Nesterenko, Roman Popovych. Contractions of low-dimensional Lie algebras. J. Math. Phys., 47(12): 123515, 45 pp., 2006.
- [2] Rudwig Campoamor-Stursberg. Some comments on contractions of Lie algebras, Adv. Studies Theor. Phys., 2(18): 865-870, 2008.
- [3] Dmytro R Popovych. Contractions with necessarily unbounded matrices. Linear Algebra Appl, 458 : 689-698, 2014.
- [4] Dmytro R Popovych, Roman O Popovych. Lowest-dimensional example on non-universality of generalized Inönü-Wigner contractions. J. Algebra 324(10), : 2742-2756, 2010.
- [5] Dmytro R Popovych, Roman O Popovych. Equivalence of diagonal contractions to generalized IW-contractions with integer exponents. *Linear Algebra Appl.*, 431(5-7): 1096-1104, 2009.
- [6] Dmytro R Popovych. Canonical forms for matrices of Saletan contractions. J. Phys.: Conf. Ser., 621: 012012, 10 pp., 2015.