ON NON-HAUSDORFF MANIFOLDS OF DIMENSION 1

Sergiy Maksymenko (Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine) *E-mail:* maks@imath.kiev.ua

Eugene Polulyakh (Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine) *E-mail:* polulyah@imath.kiev.ua

Consider a T_1 topological space Y that is locally homeomorphic with [0, 1). In other words, Y is a one-dimensional non-Hausdorff but T_1 manifold.

As usual, a point $y \in Y$ is *internal*, if it has an open neighborhood homeomorphic with (0, 1). Otherwise, y has an open neighborhood homeomorphic with [0, 1) and is called a *boundary* point. The set of all internal and boundary points will be denoted by IntY and ∂Y respectively.

For a point $z \in Y$ define its *Hausdorff closure*, hcl(z), to be the intersection of closures of all neighbourhoods of z, that is

$$\operatorname{hcl}(z) := \bigcap_{V \text{ is a neighbourhood of } z} \overline{V}.$$

Evidently, $z \in hcl(z)$. We say that z is special whenever $hcl(z) \setminus z \neq \emptyset$. Denote by \mathcal{V} the set of all special points of Y.

Let $\mathcal{H}(Y)$ be the group of homeomorphisms of Y endowed with compact open topology, and $\mathcal{H}_{id}(Y)$ be the identity path component of $\mathcal{H}(Y)$, so it is a normal subgroup consisting of homeomorphisms isotopic to the identity. The following statement gives a characterization of $\mathcal{H}_{id}(Y)$ under assumption that the set \mathcal{V} of special points of Y is locally finite.

Theorem 1. Let Y be a second-countable T_1 topological space being locally homeomorphic with [0,1)and such that the set \mathcal{V} of its special points is locally finite. Let also $k \in \mathcal{H}(Y)$. Then $k \in \mathcal{H}_{id}(Y)$ if and only if the following two conditions hold:

- (1) k fixes each special point of Y;
- (2) k preserves orientation of each connected component e of $Y \setminus \mathcal{V}$.