Orevkova Alexandra

(Moscow State University, Moscow, Russia) *E-mail:* s15b3_orevkova@179.ru

The talk is devoted to the "uniform" reduction of C^{∞} smooth functions on 2-dimensional manifolds to a canonical form at the singular points of these functions.

Definition 1. A smooth function $f = f(u_1, u_2)$ has a singularity E_6 at its critical point $P \in \mathbb{R}^2$ if

- (i) the first and second differentials df(P) = 0, $d^2f(P) = 0$, and the third differential $d^3f(P) \neq 0$ and is a perfect cube;
- (ii) there exists a vector $v \in \text{Ker } d^3f(P)$ such that $v^4f \neq 0$ (by v^4f we mean the fourth derivative of f along the tangent vector v at P).

Theorem 2 (Reducing E_6 to normal form). Let the function $f(u_1, u_2)$ have a singularity E_6 at the critical point P. Then, in some neighborhood of P, there is a local coordinate system in which the point P is the origin, and the function has the normal form

$$f = f(P) + \tilde{x}^3 \pm \tilde{y}^4$$
.

Moreover, this coordinate system can be chosen in such a way that the coordinate change $(u_1, u_2) \rightarrow (\tilde{x}, \tilde{y})$ can be expressed in terms of the original function and its partial derivatives of order ≤ 7 using algebraic operations and the operation of taking a proper integral.

Remark 3. In [1], the first part of Theorem 2, i.e. the existence of a coordinate change, was proved using Tougeron's theorem [2]; in view of this, obtaining a formula for the corresponding coordinate change requires solving the Cauchy problem for a system of ordinary differential equations. We construct our coordinate change explicitly, without using Tougeron's theorem.

Our proof of Theorem 2 consists of three steps. At first, we consider a smooth function in two variables of the form $f(u_1, u_2) = u_1^3 + u_2^4 + R(u_1, u_2)$, where the Taylor series of the function $R(u_1, u_2)$ at the origin has zero coefficients at all monomials of the form $u_1^k u_2^l$, $4k + 3l \le 12$. At second, by the sequence $(u_1, u_2) \to (x, y)$ of substitutions described in [1], we reduce the function f to such a form that the origin leaves fixed and $f_{x^k y^l}^{(k+l)}(0,0) = 0$, where $0 \le k < 3, 0 \le l < 4$. At third, using the Taylor series expansion of the function with an integral remainder, we reduce the function to the required normal form by the coordinate change

$$\phi: \mathbb{R}^2_{x,y} \to \mathbb{R}^2_{\tilde{x},\tilde{y}}$$
 with $\tilde{x} = x\sqrt[3]{g(x,y)}$, $\tilde{y} = y\sqrt[4]{h(x,y)}$,

where $g(x,y) := \sum_{k=0}^{3} \frac{y^k}{k!} f_{y^k}^{(k)}(x,0)/x^3$ and $h(x,y) := \frac{1}{6} \int_0^1 f_{y^4}^{(4)}(x,sy)(1-s)^3 ds$.

Our next goal is to describe a neighborhood in which the above coordinate change ϕ exists and is regular. To simplify our computations, we will assume that the following is true:

Assumption 4.
$$f_{u^4}^{(4)}(0,0) = 24$$
, $f_{x^3}^{""}(0,0) = 6$.

Theorem 5 (Estimating the radius of a neighborhood where the coordinate change is regular). Under the hypotheses of Theorem 2 and Assumption 4, let $U_0 = \{(x,y) \mid \max(|x|,|y|) < R_0\}$ be a neighborhood of the origin such that $C_{\alpha\beta} = \sup_{U_0} |f_{x^{\alpha}y^{\beta}}^{\alpha+\beta}(x,y)| \le M$ for $(\alpha,\beta) \in \{(0,5),(1,4),(3,1),(3,2),(3,3),(4,0),(4,1),(4,2),(4,3)\}$, where $R_0 > 0$, $M \ge 0$. Let's consider the neighborhood $U = \{(x,y) \mid \max(|x|,|y|) < R\}$, where the positive constant R is defined by the formula: $R = \min\{R_0, \frac{2}{M+2}\}$. Let also ϕ be the coordinate change from the proof of Theorem 2 that reduces f to the normal form E_6 . Then:

2 A. Orevkova

(a) the functions h(x,y) and g(x,y) do not change sign in U, that is, the change $\phi|_U$ is well defined and is smooth;

- (b) at every point $\mathbf{x} \in U$, one has $\|\phi'(\mathbf{x}) I\| < C < 1$, where $C = \frac{2}{5}$, i.e., the coordinate change $\phi|_U$ is close to the identity;
- (c) the coordinate change $\phi|_U$ is injective and regular, i.e., it is an embedding and $\det |\phi'(\mathbf{x})| \neq 0$ at every point $\mathbf{x} \in U$, moreover the image of this embedding contains the disk of radius (1-C)R centred at the origin.

Remark 6. Our coordinate change $\phi|_U$ from Theorem 2 and Theorem 5 provides a "uniform" reduction of the function f at a singular point of type E_6 to the canonical form $\tilde{x}^3 \pm \tilde{y}^4$ in the sense that the neighbourhood radius and the coordinate change we constructed in this neighbourhood (as well as all partial derivatives of the coordinate change) continuously depend on the function f and its partial derivatives. A uniform reduction of smooth functions near critical points to a canonical form was known earlier for the case of smoothly stable singularities [3]. A uniform reduction of smooth functions to a canonical form by C^k -smooth changes (for finite $k < \infty$) is known for finite type singularities [4] and for topologically stable singularities [5].

To prove Theorem 5, we apply the following lemma to the coordinate transformation ϕ from the proof of Theorem 2. We estimate the norm of the matrix in terms of its elements: $||A|| \leq \sqrt{\sum a_{ij}^2}$, $A = \{a_{ij}\}_{i,j=1}^n$.

Lemma 7. Let $\phi: U \to \mathbb{R}^n$ be a smooth mapping, where U is a convex open subset of \mathbb{R}^n . Let the differential of ϕ have the form $\phi'(\mathbf{x}) = I + A(\mathbf{x})$, where I is the unit matrix of dimension n, ||A|| < C, 0 < C < 1. Then ϕ is injective and $\det |\phi'(\mathbf{x})| \neq 0$ at every point $\mathbf{x} \in U$, i.e., ϕ is a diffeomorphism to its image $\phi(U)$. Moreover, $\langle \phi'(\mathbf{x}), \mathbf{x} \rangle \geq (1 - C) |\mathbf{x}|^2$ for every point $\mathbf{x} \in U$.

From the last assertion of Lemma 7 and [6, Corollary 8.3, Step 1], we conclude that $\phi(U)$ contains the disk of radius (1-C)R centred at the origin. This completes our proof of Theorem 5.

References

- [1] Vladimir I Arnol'd. Normal forms for functions near degenerate critical points, the Weyl groups of A_k, D_k, E_k and Lagrangian singularities. Funct. Anal. Appl., 6(4): 254-272, 1972.
- [2] Jean-Claude Tougeron. Ideaux de fonctions differentiables. I. Ann. Inst. Fourier, 18(1): 177–240, 1968.
- [3] John N Mather. Infinitesimal stability implies stability. Ann. of Math., 89: 254–291, 1969.
- [4] Anatoly M Samoilenko. The equivalence of a smooth function to a Taylor polynomial in the neighborhood of a finite-type critical point. Funct. Anal. Appl., 2(4): 318–323, 1968.
- [5] Hans Brodersen. M-t topologically stable mappings are uniformly stable. Math. Scand., 52: 61-68, 1983.
- [6] Elena A Kudryavtseva, Dmitry A Permyakov. Framed Morse functions on surfaces. Sbornik Math., 201(4): 501–567, 2010.