SECOND CLASSICAL ZARISKI TOPOLOGY OF MULTIPLICATIONAL MODULE

Marta Maloid-Hliebova

(Ivan Franko National University of Lviv, 1, Universytetska St., Lviv, 79000, Ukraine) *E-mail:* martamaloid@gmail.com

Let R be a associative ring and M an multiplicative R-module. If N is a subset of an R-module M we write $N \leq M$ to indicate that N is a submodule of M.

Definition 1. Proper submodule P of the left module M is called **prime submodule**, if quotient module M/P is prime left module, ie Ann(K/P) = Ann(M/P) for every nonzero submodule K/P of module M/P.

This definition can be found in such papers: [1], [2], and there are a lot of interesting results about such modules. Set of all prime submodules of module M is called prime spectrum of module M and is denoted by Spec(M).

Definition 2. A non-zero submodule N of M is said to be second if for each $a \in R$, the homomorphism $N \rightarrow^a N$ is either surjective or zero [3]. More information about this class of modules can be found in [4].

Let $Spec^{s}(M)$ be the set of all second submodules of M. For any submodule N of M, $V^{s*}(N)$ is defined to be the set of all second submodules of M contained in N. Of course, $V^{s*}(0)$ is just the empty set and $V^{s*}(M)$ is $Spec^{s}(M)$. It is easy to see that for any family of submodules $N_{i}(i \in I)$ of M, $\bigcap_{i \in I} V^{s*}(N_{i}) = V^{s*}(\bigcap_{i \in I} N_{i})$. Thus if $\zeta s*(M)$ denotes the collection of all subsets $V^{s*}(N)$ of $Spec^{s}(M)$, then $\zeta s*(M)$ contains the empty set and $Spec^{s}(M)$, and $\zeta s*(M)$ is closed under arbitrary intersections. In general $\zeta s*(M)$ is not closed under finite unions.

Now let N be a submodule of M. We define $W^s(N) = Spec^s(M) - V^{s*}(N)$ and put $\Omega^s(M) = \{W^s(N) : N \leq M\}$. Let $\eta^s(M)$ be the topology on $Spec^s(M)$ by the sub-basis $\Omega^s(M)$. In fact $\eta^s(M)$ is the collection U of all unions of finite intersections of elements of $\Omega^s(M)$ [6]. We call this topology the second classical Zariski topology of M.

Theorem 3. Let R be a associative Noetherian ring and let M be a cotop multiplicational R-module with finite length. Assume that the second classical Zariski topology of M and the Zariski topology of M considered in [5] coincide. Then M is a comultiplication R-module.

Theorem 4. Let R be a associative Noetherian ring and let M be a co-multiplication R-module with finite length. Then $Spec^{s}(M)$ is a spectral space (with the second classical Zariski topology).

References

- [1] Page S. Properties of quotient rings // Can. J. Math. 1972 24, №6 P. 1122-1128.
- [2] Dauns J. Prime modules // Reine Angew. Math. 1978. 298. P. 156-181.
- [3] S. Yassemi, The dual notion of prime submodules, // Arch. Math (Brno) 2001. 37. P. 273-278.
- [4] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, to appear in Algebra Colloq.
- [5] H. Ansari-Toroghy and F. Farshadifar, he Zariski topology on the second spectrum of a module, to appear in Algebra Colloq.
- [6] J. R. Munkres Topology. A First Course. // Prentice Hall. 1975.