Nonlocal problem with integral conditions for homogeneous system of partial differential equations of second order

Grzegorz Kuduk

(Faculty of Mathematics and Natural Sciences University of Rzeszow, Graduate of University of Rzeszow)

E-mail: gkuduk@onet.eu

Let $\Pi(T) = \{(t, x) \in \mathbb{R}^2 : t \in [0, T], x \in \mathbb{R}\}, T > 0$. Let us denote $E_{\alpha,\beta}, \alpha > 0, \beta > 0$, to the space of functions $\varphi \in L_2(\mathbb{R})$, with the finite norm [1]

$$\|\varphi\|_{E_{\alpha,\beta}} = \sqrt{\frac{1}{2\pi} \int_{-\infty}^{+\infty} |\hat{\varphi}(\xi)|^2 (1+|\xi|)^{2\alpha} \exp(2\beta|\xi|) d\xi}$$

where $\hat{\varphi}(\xi)$ is the Fourier transform of the function $\varphi(x)$. In the strip $\Pi(T)$ we consider nonlocalintegral problem

$$L\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}\right)u(t, x) \equiv \frac{\partial^n u(t, x)}{\partial t^n} + \sum_{j=1}^n a_j \frac{\partial^n u(t, x)}{\partial t^{n-j} \partial x^j} = 0, \quad a_j \in \mathbb{C}, \quad (t, x) \in \Pi(T), \tag{1}$$

$$\frac{\partial^k U}{\partial t}\Big|_{t=0} - \frac{\partial^k U}{\partial t}\Big|_{t=T} + \int_0^T t^k U(t,x)dt = \varphi_k(x), \quad k = 0, ..., n-2,$$
(2)

$$\int_{0}^{T_{1}} t^{n-1} U(t,x) dt + \int_{T_{2}}^{T} t^{n-1} U(t,x) dt = \varphi_{n-1}(x)$$
(3)

where $a_1, a_2 \in \mathbb{C}$. Assuming that the real parts of roots of polynomial $\lambda^n + a_1 \lambda^{n-1} + ... + a_n$ are nonzero and different, the correctioness of the problem (1) - (3) in the space of functions $C^2([0, T], E_{\alpha,\beta})$ is established.

Obtained results continue the research of the work [2].

References

- Yu. A. Dubinskii The algebra of pseudodifferential operators with analytic symbols and its applications to mathematical physicals. Russian Mathematical Surveys, (1982), 37(5): 109-153.
- [2] P.I. Kalenyuk, Z.N. Nytrebych, M.M. Symotyuk, G, Kuduk. Integral problem for partial differential equation of second order in unboudud layer, Bukovinian Mathematical Journal. Vol. 4, No 3-4. (2016) - Chernivtsi: Chernivtsi Nat. Univ., - P. 69 - 74.