ELEMENTS OF PROBABILITY THEORY AND MEASURES WITH VALUES IN HYPERCOMPLEX ALGEBRAS

Tamila Kolomiiets(Zhytomyr Ivan Franko State University, Zhytomyr 10008, Ukraine)*E-mail:* tamila.kolomiiets@gmail.com

Anatoliy Pogorui (Zhytomyr Ivan Franko State University, Zhytomyr 10008, Ukraine) *E-mail:* pogor@zu.edu.ua

In recent years, the expansion of probability theory and measure theory from real values to values in hypercomplex numbers are actively studied because of their possible applications in mathematics and physics [1] - [5]. In this paper, we extend the notion of probability measure to the case where the measure takes values in the algebra of bihyperbolic numbers [6]. In addition, the concept of the real-valued measure is generalized to the quaternionic-valued measure [7].

The bihyperbolic numbers forms a 4-dimensional algebra over the field of real numbers $\mathbb{W}_4 = \{a_0 + a_1e + a_2f + a_3g, a_i \in \mathbb{R}, i = 0, 1, 2, 3\}$ with basis $\{1, e, f, g\}$ and the following multiplications $e^2 = f^2 = g^2 = 1$, ef = fe = g, eg = ge = f, fg = gf = e.

Lemma 1. [8] Any bihyperbolic number α can be represented as $\alpha = r_1i_1 + r_2i_2 + r_3i_3 + r_4i_4$, where i_k are idempotents of algebra \mathbb{W}_4 , $r_k \in \mathbb{R}$, k = 1, 2, 3, 4.

We define on \mathbb{W}_4 the relation of partial order \preccurlyeq such as $\alpha \preccurlyeq \beta \iff \beta - \alpha \in \mathbb{W}_4^+ = \{x_1i_1 + x_2i_2 + x_3i_3 + x_4i_4 | x_k \ge 0, k = 1, 2, 3, 4\}$. If $\alpha \preccurlyeq \beta$ but $\alpha \neq \beta$, we denote $\alpha \prec \beta$. Let us denote by A_x , the set of all bihyperbolic numbers which are not \mathbb{W}_4 -comparable with $x \in \mathbb{W}_4$.

Definition 2. The \mathbb{W}_4 -valued modulus of a bihyperbolic number $\alpha = r_1 i_1 + r_2 i_2 + r_3 i_3 + r_4 i_4$ is said to be $|\alpha|_{\mathbb{W}_4} = |r_1 i_1 + r_2 i_2 + r_3 i_3 + r_4 i_4|_{\mathbb{W}_4} = |r_1| i_1 + |r_2| i_2 + |r_3| i_3 + |r_4| i_4 \in \mathbb{W}_4^+$, where $|r_1|$, $|r_2|$, $|r_3|$, $|r_4|$ are ordinary modules of real numbers.

Definition 3. Let (Ω, Σ) be a measurable space. The function $P_{\mathbb{W}_4} : \Sigma \to \mathbb{W}_4$ is called a \mathbb{W}_4 -valued probability (or bihyperbolic probability) on the σ -algebra of events Σ , if the following conditions hold: 1) $P_{\mathbb{W}_4}(A) \geq 0, \forall A \in \Sigma; 2) P_{\mathbb{W}_4}(\Omega) = \zeta$, where $\zeta = 1, i_1, i_2, i_3, i_4; 3$) For any sequence $\{A_n, n \geq 1\} \subset \Sigma$ of pairwise incompatible random events we have $P_{\mathbb{W}_4}(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P_{\mathbb{W}_4}(A_n)$.

The triplet $(\Omega, \Sigma, P_{\mathbb{W}_4})$ is called a \mathbb{W}_4 -probability space.

Each \mathbb{W}_4 -valued probability measure can be written in the form $P_{\mathbb{W}_4}(A) = P_1(A)i_1 + P_2(A)i_2 + P_3(A)i_3 + P_4(A)i_4$, where $P_1(A), P_2(A), P_3(A), P_4(A)$ are probabilities.

The topology induced by the bihyperbolic norm generates the Borel σ -algebra $\mathfrak{B}_{\mathbb{W}_4}$ in \mathbb{W}_4 .

Definition 4. Let $(\Omega, \Sigma, P_{\mathbb{W}_4})$ be a \mathbb{W}_4 -probability space. A function $X_{\mathbb{W}_4}(\omega) : \Omega \to \mathbb{W}_4$ such as $X_{\mathbb{W}_4}^{-1}(A) \in \Sigma$ for each open set A in \mathbb{W}_4 is called a \mathbb{W}_4 -valued random variable.

Each \mathbb{W}_4 -valued random variable $X_{\mathbb{W}_4}(\omega)$ can be written in the following form $X_{\mathbb{W}_4}(\omega) = X_1(\omega) i_1 + X_2(\omega) i_2 + X_3(\omega) i_3 + X_4(\omega) i_4$, where $X_1(\omega), X_2(\omega), X_3(\omega), X_4(\omega)$ are \mathbb{R} -random variables on Ω .

Theorem 5. The \mathbb{W}_4 -valued function $X_{\mathbb{W}_4}(\omega)$ on a measurable space (Ω, Σ) is a \mathbb{W}_4 -valued random variable if and only if $\{\omega \in \Omega | X_{\mathbb{W}_4}(\omega) \prec x \text{ or } X_{\mathbb{W}_4}(\omega) \in A_x\} \in \Sigma$ for all $x \in \mathbb{W}_4$.

Theorem 6. Let $X_{\mathbb{W}_4}(\omega)$ be a \mathbb{W}_4 -valued random variable on $(\Omega, \Sigma, P_{\mathbb{W}_4})$. For $\forall x \in \mathbb{W}_4$ the following conditions are equivalent: $\{\omega \in \Omega | X_{\mathbb{W}_4}(\omega) \preccurlyeq x\} \in \Sigma; \{\omega \in \Omega | X_{\mathbb{W}_4}(\omega) \succ x \text{ or } X_{\mathbb{W}_4}(\omega) \in A_x\} \in \Sigma; \{\omega \in \Omega | X_{\mathbb{W}_4}(\omega) \succ x \text{ or } X_{\mathbb{W}_4}(\omega) \in A_x\} \in \Sigma; \{\omega \in \Omega | X_{\mathbb{W}_4}(\omega) \preccurlyeq x\} \in \Sigma.$

The algebra of quaternions is a structure of the form $\mathbb{H} = \{a_0 + a_1i + a_2j + a_3k, a_i \in \mathbb{R}, i = 0, 1, 2, 3\}$, where $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j.

Definition 7. Let \mathfrak{M} be a σ -algebra of subsets of a non-empty set X. A quaternionic measure ω on a measurable space (X, \mathfrak{M}) is a quaternion-valued function on \mathfrak{M} such that for any collection of sets $\{A_n, n \in \mathbb{N}\} \subset \mathfrak{M}$ that $A_n \cap A_m = \emptyset$ whenever $n \neq m$ we have $\omega (\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \omega(A_n)$.

Definition 8. The function of the sets var $[\omega](A) := \sup \sum_{n=1}^{\infty} |\omega(A_n)|$ is defined on the \mathfrak{M} , where the supremum is taken for all partitions of A, we call the complete variation ω .

It is clear that $|\omega(A)| \leq \operatorname{var}[\omega](A)$.

Theorem 9. The total variation var $[\omega]$ of a quaternionic measure ω on a measurable space (X, \mathfrak{M}) is a positive measure on (X, \mathfrak{M}) .

Theorem 10. If ω is a quaternionic measure on a measurable space (X, \mathfrak{M}) , then $\operatorname{var}[\omega](X) < \infty$.

Definition 11. Let μ be a positive measure and ω be a quaternionic measure on a measurable space (X, \mathfrak{M}) . We say that ω is absolutely continuous with respect to μ if $\mu(A) = 0$ implies $\omega(A) = 0$ for $A \in \mathfrak{M}$. We write $\omega \ll \mu$.

Definition 12. Given a quaternionic measure ω on a measurable space (X, \mathfrak{M}) , assume that there is a set $F \in \mathfrak{M}$ such that $\omega(A) = \omega(A \cap F)$ for every $A \in \mathfrak{M}$, we say that ω is concentrated on F. This is equivalent to say that $\omega(A) = 0$ whenever $A \cap F = 0$.

Let ω_1, ω_2 be quaternionic measures on \mathfrak{M} and suppose there exist a pair of disjoint sets F, G such that ω_1 is concentrated on F and ω_2 is concentrated on G. Then we say that ω_1 and ω_2 are mutually singular, and write $\omega_1 \perp \omega_2$.

Theorem 13. Let λ be a signed real σ -finite measure on a measurable space (X, \mathfrak{M}) and let ω be a quaternionic measure on (X, \mathfrak{M}) . Then there exists a unique pair of quaternionic measures ω_a and ω_s such that $\omega = \omega_a + \omega_s$, $\omega_a \ll \lambda$, $\omega_s \perp \lambda$. The pair ω_a, ω_s is called the Lebesgue decomposition of ω w.r.t. λ , where ω_a is the absolutely continuous part and ω_s is the singular part of the decomposition.

Theorem 14. (Radon-Nikodym). Let μ be a positive σ -finite measure on a measurable space (X, \mathfrak{M}) , let ω be a quaternionic measure on (X, \mathfrak{M}) and let ω_a be absolutely continuous part of the Lebesgue decomposition of ω w.r.t. μ . Then there is a measurable quaternionic function h(x) on X such that for every set $A \in \mathfrak{M}$ $\omega_a(A) = \int_A h(x) d\mu$, where h(x) is uniquely defined up to a μ -null set.

References

- [1] Rudin W. Real and Complex Analysis. McGraw-Hill Book Company & Singapore, New York, 1987.
- [2] Alpay D., Elena Luna-Elizarrarás M., Shapiro M. Kolmogorov's axioms for probabilities with values in hyperbolic numbers. Adv. Appl. Clifford Algebras, 27: 913-929, 2017.
- [3] Kumar R., Sharma K. Hyperbolic valued random variables and conditional expectation. ArXiv:1611.06850v2 [math.PR] 27 Mar 2017, 2017.
- [4] Kumar R., Sharma K. Hyperbolic valued measures and Fundamental law of probability. Global J. of Pure and Appl. Math, 13(10): 7163-7177, 2017.
- [5] Ghosh Ch., Biswas S., Yasin T. Hyperbolic Valued Signed Measure. Internat. J. of Math. Trends and Technology, 55(7): 515-522, 2018.
- [6] Kolomiiets T. Yu. Elements of probability theory with values in bihiperbolic algebra. Proceedings of IPMM NAS of Ukraine, 34, 2020 (in Ukrainian).
- [7] Luna-Elizarrarás M. E., Pogorui A., Shapiro M., Kolomiiets T. On Quaternionic Measure. Adv. Appl. Clifford Algebras, 30(63), 2020.
- [8] Pogorui A. A., Rodríguez-Dagnino R. M., Rodríguez-Said R. D. On the set of zeros of bihyperbolic polynomials. Complex Variables and Elliptic Equations, 53(7): 685-690, 2008.