On the behavior at infinity of ring Q-homeomorphisms

Ruslan Salimov

(Institute of Mathematics of NAS of Ukraine) *E-mail:* ruslan.salimov1@gmail.com

Bogdan Klishchuk (Institute of Mathematics of NAS of Ukraine) *E-mail:* kban1988@gmail.com

Let Γ be a family of curves γ in \mathbb{R}^n , $n \ge 2$. A Borel measurable function $\rho : \mathbb{R}^n \to [0, \infty]$ is called *admissible* for Γ , (abbr. $\rho \in \operatorname{adm} \Gamma$), if

$$\int\limits_{\gamma} \rho(x) \, ds \; \geqslant \; 1$$

for any curve $\gamma \in \Gamma$. Let $p \in (1, \infty)$. The quantity

$$M_p(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\mathbb{R}^n} \rho^p(x) \, dm(x)$$

is called p-modulus of the family Γ .

For arbitrary sets E, F and G of \mathbb{R}^n we denote by $\Delta(E, F, G)$ a set of all continuous curves γ : $[a, b] \to \mathbb{R}^n$, that connect E and F in G, i.e., such that $\gamma(a) \in E$, $\gamma(b) \in F$ and $\gamma(t) \in G$ for a < t < b. Let D be a demain in \mathbb{R}^n , $n \geq 2$, $n \in D$ and d, dist(n = 2D). Set

Let D be a domain in \mathbb{R}^n , $n \ge 2$, $x_0 \in D$ and $d_0 = \operatorname{dist}(x_0, \partial D)$. Set

$$\mathbb{A}(x_0, r_1, r_2) = \{ x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2 \},\$$

$$S_i = S(x_0, r_i) = \{x \in \mathbb{R}^n : |x - x_0| = r_i\}, \quad i = 1, 2$$

Let a function $Q: D \to [0, \infty]$ be Lebesgue measurable. We say that a homeomorphism $f: D \to \mathbb{R}^n$ is ring Q-homeomorphism with respect to p-modulus at $x_0 \in D$, if the relation

$$M_p(\Delta(fS_1, fS_2, fD)) \leqslant \int_{\mathbb{A}} Q(x) \eta^p(|x - x_0|) dm(x)$$

holds for any ring $\mathbb{A} = \mathbb{A}(x_0, r_1, r_2)$, $0 < r_1 < r_2 < d_0$, $d_0 = \operatorname{dist}(x_0, \partial D)$, and for any measurable function $\eta : (r_1, r_2) \to [0, \infty]$ such that

$$\int_{r_1}^{r_2} \eta(r) \, dr = 1$$

Denote by ω_{n-1} the area of the unit sphere $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ in \mathbb{R}^n and by $q_{x_0}(r) = \frac{1}{\omega_{n-1}r^{n-1}} \int_{S(x_0,r)} Q(x) d\mathcal{A}$ the integral mean over the sphere $S(x_0,r) = \{x \in \mathbb{R}^n : |x - x_0| = r\}$, here $d\mathcal{A}$ is the element of the surface area. Let L(x - f, R)

 $d\mathcal{A}$ is the element of the surface area. Let $L(x_0, f, R) = \sup_{|x-x_0| \leq R} |f(x) - f(x_0)|$.

Theorem. Suppose that $f : \mathbb{R}^n \to \mathbb{R}^n$ is a ring Q-homeomorphism with respect to p-modulus at a point x_0 with p > n where x_0 is some point in \mathbb{R}^n . Then for all numbers $r_0 > 0$ the estimate

$$\lim_{R \to \infty} \left(L(x_0, f, R) \left(\int_{r_0}^{R} \frac{dt}{t^{\frac{n-1}{p-1}} q_{x_0}^{\frac{1}{p-1}}(t)} \right)^{-\frac{p-1}{p-n}} \right) \geqslant \left(\frac{p-n}{p-1} \right)^{\frac{p-1}{p-n}} > 0$$

holds.

Acknowledgements

This work was supported by the budget program "Support of the development of priority trends of scientific researches" (KPKVK 6541230).