ENUMERATION OF TOPOLOGICALLY NON-EQUIVALENT FUNCTIONS WITH ONE DEGENERATE SADDLE CRITICAL POINT ON TRIPLE TORUS

Oleksandr Kadubovs'kyi (Donbas State Pedagogical University, Slovians'k, Ukraine) *E-mail:* kadubovs@ukr.net

Let $(N, \partial N)$ be a smooth surface with the edge ∂N (∂N can be empty). Let $C^{\infty}(N)$ denote the space of infinitely differentiable functions on N with edge $\partial N = \partial_{-}N \cup \partial_{+}N$, all critical points of which are isolated and lie in the interior of N, and, furthermore, on the connected components of the edge $\partial_{-}N$ ($\partial_{+}N$) the functions from $C^{\infty}(N)$ take the same values a (b accordingly).

Two functions f_1 and f_2 from the space $C^{\infty}(N)$ are called topologically equivalent if there are homeomorphisms $h: N \to N$ and $h': R^1 \to R^1$ (h' preserves orientation) such that $f_2 = h' \circ f_1 \circ h^{-1}$. If h preserves of the orientation, the functions f_1 and f_2 are called topologically conjugated (eg. [2]) or O-topologically equivalent (eg. [6]).

It is known [2] that a function $f \in C^{\infty}(N)$, in a certain neighborhood of its isolated critical point $x \in N$ (which is not a local extremum) for which the topological type of level lines changes in passing through x, is reduced by a continuous change of coordinates to the form $f = \text{Re}z^n + c$, $n \geq 2$ (are called «essentially» critical point) or f = Rez if the topological type of level lines does not change in passing through x. The number of essentially critical points x_i of the function f, together with the values of n_i (exponents in there presentation $f = \text{Re}z^{n_i} + c_i$ in the neighborhoods of the critical points x_i), are called the topological singular type of the function f.

The problem of the topological equivalence of functions from the class $C^{\infty}(N)$ with the fixed number of critical points was completely solved by V.V. Sharko in [3] and it was established that a finite number of topologically nonequivalent functions of this class exist. However, it should be noted that the task about calculation of topologically non-equivalent functions with the fixed topological singular type is rather complicated and is still **unsolved**.

When considering functions from the class $C(M_g) \subset C^{\infty}(N)$ that possess **only one** essentially critical point x_0 (degenerate critical point of the saddle type) in addition to local maxima and minima on oriented surface M_g of genus $g \ge 0$, then the problem of counting the number of such non-equivalent functions is greatly simplified. It is well known [2] that $\forall f \in C(M_g)$ the Poincare index of a critical point x_0 , is equal $\operatorname{ind}^f(x_0) = 1-n$, where $n = 2g-1+\lambda$ and λ is a total number of local maxima and minima.

Let $C_n(M_g)$ be a class of functions from $C(M_g)$ which, in addition to local maxima and minima, have only one essentially critical point, whose the Poincare index is equal (1-n). Denote the class of functions from $C(M_g)$ that possess one essentially critical point, k local maxima and l local minima by $C_{k,l}(M_g)$. Then it is clear that $\forall f \in C_{k,l}(M_g)$ n = 2g - 1 + k + l.

In the general case, for natural g, k, l (or k, l, and n = 2g + k + l - 1), the problem of calculating the number of topologically non-equivalent functions from the class $C_{k,l}(M_g)$ also has proved to be quite a difficult and unsolved problem to date.

The task of calculating the number of topologically non-equivalent functions from the class $C_{1,1}(M_g)$ (for genus $g \ge 1$) was completely solved in [4]. In [5], for natural k and l solved completely the problems of calculating the numbers O-topologically and topologically non-equivalent functions from the class $C_{k,l}(M_0)$ (on two-dimensional sphere).

In [6], [7] solved completely the problems of calculating the numbers O-topologically and topologically non-equivalent functions from the class $C_{1,n-2}(M_1)$ and $C_{1,n-4}(M_2)$ accordingly.

In general case, for functions from the class $C_{1,n-2q}(M_q)$, the task is also still unsolved.

By using the results of [1] we can establish the validity of the following statement

Theorem 1. For natural $n \ge 7$ the number $d^*(n)$ of O-topologically non-equivalent functions from the class $C_{1,n-6}(M_3)$ can be calculated by the relation

$$d^*(n) = \frac{1}{n} \left(d(n) + \sum_{j|n, \ j \in \{2;3;4;6;7;8;9;12\}} \phi(j) \cdot \rho\left(n, \frac{n}{j}\right) \right), \tag{1}$$

where: $\phi(q)$ is the Euler totient function;

$$d(n) = \frac{1}{72}C_{n+1}^8 \cdot (9n^4 - 18n^3 - 57n^2 + 34n + 80);$$
⁽²⁾

 $\forall j \in N : \frac{n}{j} \notin N \text{ the value } \rho\left(n, \frac{n}{j}\right) \equiv 0; \quad \forall j \in \{2; 3; 4; 6; 7; 8; 9; 12\} : \frac{n}{j} \in N \text{ the value of } \rho\left(n, \frac{n}{j}\right) \text{ can be calculated by the relations}$

$$\rho\left(n,\frac{n}{12}\right) = \frac{n}{12}, \quad \rho\left(n,\frac{n}{9}\right) = \frac{2n}{9}, \quad \rho\left(n,\frac{n}{8}\right) = \frac{n}{4}, \quad \rho\left(n,\frac{n}{7}\right) = \frac{5n}{7}, \quad \rho\left(n,\frac{n}{4}\right) = \frac{n(n-4)(n+40)}{384}, \quad (3)$$

$$\rho\left(n,\frac{n}{6}\right) = \frac{n(n-6)}{72}, \quad \rho\left(n,\frac{n}{3}\right) = \frac{n(n-3)(n-6)(3n+29)}{648}, \quad \rho\left(n,\frac{n}{2}\right) = \frac{n(n-2)(n-4)(n-6)(37n^2+294n-2320)}{46080}.$$

n	d(n)	$d^*(n)$	n	d(n)	$d^*(n)$
7	180	30	19	$1 \ 801 \ 329 \ 010$	94 806 790
8	3 044	385	20	$3 \ 600 \ 529 \ 450$	$180 \ 028 \ 084$
9	26 060	2 900	21	$6 \ 925 \ 187 \ 830$	329 770 930
10	152 900	15 308	22	$12 \ 869 \ 925 \ 310$	$584 \ 999 \ 362$
11	696 905	63 355	23	$23 \ 190 \ 544 \ 696$	$1 \ 008 \ 284 \ 552$
12	$2 \ 641 \ 925$	220 242	24	40 637 416 600	$1 \ 693 \ 230 \ 295$
13	$8 \ 691 \ 683$	668 591	25	$69 \ 427 \ 501 \ 000$	2 777 100 040
14	25 537 655	$1 \ 824 \ 311$	26	$115 \ 901 \ 728 \ 800$	$4 \ 457 \ 765 \ 752$
15	$68 \ 396 \ 900$	$4\ 559\ 818$	27	$189 \ 426 \ 912 \ 675$	$7 \ 015 \ 811 \ 753$
16	$169 \ 537 \ 940$	10 596 558	28	303 616 322 295	$10 \ 843 \ 450 \ 498$
17	$393 \ 481 \ 660$	$23 \ 145 \ 980$	29	$477 \ 960 \ 911 \ 025$	$16 \ 481 \ 410 \ 725$
18	$862 \ 928 \ 092$	47 941 370	30	739 984 318 125	24 666 159 267

TABLE 1. Number $d^*(n)$ of O-topologically non-equivalent functions from the class $C_{1,n-6}(M_3)$

References

- Goupil A., Schaeffer G. Factoring n-cycles and counting maps of given genus. European Journal of Combinatorics, 19(7): 819-834, 1998.
- [2] Prishlyak A.O. Topological equivalence of smooth functions with isolated critical points on a cloused surface. *Topologyand its Aplications*, 119(3): 257-267, 2002.
- [3] Sharko V.V. Smooth and Topological Equivalence of Functions on Surfaces. Ukrainian Mathematical Journal, 55(5): 687-700, 2003.
- [4] Kadubovs'kyi O.A. Enumeration of topologically non-equivalent smooth minimal functions on a closed surfaces. Zbirnyk Prats' Institutu Matematyky NAN Ukrainy, 12(6): 105-145, 2015.
- [5] Kadubovskyi A.A. Enumeration of topologically non-equivalent functions with one degenerate saddle critical pointon two-dimensional sphere, II. Proceedings of the International Geometry Center, 8(1): 46-61, 2015.
- [6] Kadubovs'kyi O.A., Balyasa N.P. Enumeration of 2-color chord O-diagrams of the genus one that have one black (or grey) face under rotation and reflection. Zb. naukovih prac' fiziko-matematicnogo fakul'tetu DDPU, 6: 31-46, 2016.
- [7] Kadubovs'kyi O.A., Sypchuk Ye. On the number of non-isomorphic 2-color chord O-diagrams of the genus two that have one grey (or black) face. Zb. naukovih prac' fiziko-matematicnogo fakul'tetu DDPU, 10: 21-32, 2020.