A TOPOLOGICAL TRANSFORMATION GROUP OF A HYPERSPACE

Jumaev Davron Ilxomovich

(Tashkent Institute of Architecture and Civil Engineering) *E-mail:* d-a-v-ron@mail.ru

Zaitov Adilbek Atakhanovich (Tashkent Institute of Architecture and Civil Engineering)

E-mail:

Let X be a compact Hausdorff space. By $\exp X$ we denote a set of all nonempty closed subsets of X. A family of sets of the view

$$O\langle U_1, ..., U_n \rangle = \{ F \in \exp X : F \subset \bigcup_{i=1}^n U_n, F \cap U_1 \neq \emptyset, ..., F \cap U_n \neq \emptyset \}$$

forms a base of a topology on $\exp X$, where U_1, \ldots, U_n are open nonempty sets in X. This topology is called *the Vietoris topology*. A space $\exp X$ equipped with Vietoris topology is called *hyperspace* of X. For a compact space X its hyperspace $\exp X$ is also a compact space.

Let $f: X \to Y$ be continuous map of compacts, $F \in \exp X$. We put

 $(\exp f)(F) = f(F).$

This equality defines a map $\exp f: \exp X \to \exp Y$. For a continuous map f the map $\exp f$ is continuous. Really, it follows from the formula [?]

$$(\exp f)^{-1}O\langle U_1, ..., U_m \rangle = O\langle f^{-1}(U_1), ..., f^{-1}(U_m) \rangle$$

what one can check directly. Note that if $f: X \to Y$ is an epimorphism, then $\exp f$ is also an epimorphism.

For a Tychonoff space X we put

$$\exp_{\beta} X = \{ F \in \exp \beta X : F \subset X \}.$$

It is clear, that $\exp_{\beta} X \subset \exp_{\beta} X$. Consider the set $\exp_{\beta} X$ as a subspace of the space $\exp_{\beta} X$. For a Tychonoff spaces X the space $\exp_{\beta} X$ is also a Tychonoff space with respect to the induced topology.

For a continuous map $f: X \to Y$ of Tychonoff spaces we put

$$\exp_{\beta} f = \left(\exp \beta f \right) \big|_{\exp_{\beta} X},$$

where $\beta f: \beta X \to \beta Y$ is the Stone-Cěch compactification of f (it is unique).

For a Tychonoff space X put

$$\exp(\operatorname{Homeo}(X)) = \{\exp(g) : g \in \operatorname{Homeo}(X)\}.$$

Proposition 1. For an arbitrary Tychonoff space X we have

$$\exp(\operatorname{Homeo}(X)) \subset \operatorname{Homeo}(\exp(X)).$$

Note that the inclusion cannot be reversed.

Example 1. Let $X = \{a, b\}$ be a two-point discrete space. Then exp X is three point discrete space. There exist only two homeomorphisms of X onto itself: $h, h': X \to X$, defined by the rules h(a) = a, h(b) = b and h'(a) = b, h'(b) = a. At the same time exp X has six different homeomorphisms four of them could not be generated by h and h'.

For a topological transformation group (G, X, α) we put

$$\exp(G) = \{\exp(\alpha_g) : g \in G\},\$$

here $\alpha_q(x) = g(x)$.

Let U_g be an open in G neighbourhood of an element $g \in G$. we define a set $U_{\exp(\alpha_g)} = \{\exp(\alpha_h) : h \in U_g\}$ and put

$$\mathfrak{B}_{\exp(\alpha_g)} = \{ U_{\exp(\alpha_g)} : U_g \in \tau_G \}$$

here τ_G is the topology on the space G. It is easy to check that the family $\mathfrak{B}_{\exp(\alpha_g)}$ forms a neighbourhood system of the point $\exp(\alpha_g) \in \exp(G)$.

Theorem 1. The set $\exp(G)$ is a topological group with respect to the operation $\exp(\alpha_{g_1})\exp(\alpha_{g_2}) = \exp(\alpha_{g_1g_2})$. Moreover, $\exp(\alpha_e)$ is a unit of the group $\exp(G)$ and $\exp(\alpha_g)^{-1} = \exp(\alpha_{g^{-1}})$, $g \in G$.

Now for α it is possible to define the action α^{\exp} : $\exp(G) \times \exp(X) \to \exp(X)$ by the rule

$$\alpha^{\exp}(\exp(\alpha_g), F) = \exp(\alpha_g)(F).$$

Proposition 2. For the topological transformation groups (G, X, α) , the triple $(\exp(G), \exp(X), \alpha^{\exp})$ is a topological transformation groups.

Proposition 3. If the set $A \subset X$ is G-invariant, then the set $\exp(A)$ is $\exp(G)$ -invariant.

Proposition 4. For a topological transformation group (G, X, α) , we have

$$\ker \alpha^{\exp} = \exp(\ker \alpha).$$

Here $\ker \alpha^{\exp} = \{\exp(\alpha_g) \in \exp(G) : \exp(\alpha_g)(F) = F, \forall F \in \exp(X)\}, \exp(\ker \alpha) = \{\exp(\alpha_g) \in \exp(G) : g \in \ker \alpha\}.$

Proposition 4 immediately implies

Corollary 5. The action α^{exp} is effective if and only if the action α is effective.

Note that for the transitive action α of the group G on the space X, the action α^{\exp} induced from α may not be transitive.

Example 6. Let $X = \{x_1, x_2, x_3\}$ be the discrete topological space (all three points are different). Let

$$G = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$$

- the discrete topological group of permutations of the index set $\{1, 2, 3\}$. The action $\alpha: G \times X \to X$ of the group G on the space X is defined by the rule $\alpha(g, x_i) = x_{g(i)}$. Then α is a transitive action. Moreover, $\alpha_g(x_i) = x_{g(i)}$. It is clear that $\exp(\alpha_g)(\{x_1, x_2, x_3\}) = \{x_1, x_2, x_3\}$ for each $g \in G$. Thus, for no closed subset $F \subset X$ there is no element $\exp(\alpha_g)$ of the group $\exp(G)$ for which $\exp(\alpha_g)(F) = \Phi$, here $\Phi = \{x_1, x_2, x_3\}, F \neq \Phi$. Therefore, the action α^{\exp} is not transitive.

Example 6 shows that the action of the group $\exp(G)$ on the space $\exp(X)$ may not be free, although the action of the group G on the space X is free. But, nevertheless, the following is true.

Proposition 7. Let $X = \{x_1, \ldots, x_n\}$ be a finite discrete space, G an arbitrary permutation group (supplied by the discrete topology) of the set X. Then, for each free action α of the group G on the space X, the corresponding action α^{\exp} of the group $\exp(G)$ on the space $\exp(X)$ is semi-free. In this case, the only point in the space $\exp(X)$ that remains motionless under the action of all elements of $\exp(G)$ is the set $\{x_1, \ldots, x_n\}$.

It is clear that if G is a compact group, then $\exp(G)$ is also a compact group.

Theorem 8. The action α^{\exp} : $\exp(G) \times \exp(X) \to \exp(X)$ of the compact group $\exp(G)$ on the space $\exp(X)$ is a closed map.

The next statement follows from Theorem 8.

Corollary 9. If G is a compact group and X is some G-space, then for any closed set $A \subset \exp(X)$ the set $\exp(G)(A)$ is closed in $\exp(X)$ and for compact A the set $\exp(G)(A)$ is compact.

Theorem 10. If $f: X \to Y$ is an equivariant map of one G-space to another, then $\exp(f): \exp(X) \to \exp(Y)$ is also an equivariant map of $\exp(G)$ -spaces.

The normality of the functor exp and Theorem 10 imply

Corollary 11. If $f: X \to Y$ is an equivalence of G-spaces X and Y, then $\exp(f): \exp X \to \exp Y$ is an equivalence of $\exp(G)$ -spaces $\exp X$ and $\exp Y$.

$\operatorname{References}$

- [1] Glen E. Bredon. Introduction to compact transformation groups. Academic Press. New York London, 1972.
- [2] M. Madirimov, A. A. Zaitov. Equivariant maps of probability measures space (Russian). Bulletin of Institute of Mathematics, 2021 (accepted).
- [3] Yu. M. Smirnov. On equivariant embeddings of G-spaces. Russian Math. Surveys, 1976, vol. 31, no. 5, 198-209.