On the monoid of cofinite partial isometries of positive integers with a BOUNDED FINITE NOISE

Oleg Gutik

(Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine) E-mail: oleg.gutik@lnu.edu.ua

Pavlo Khylynskyi

(Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine) E-mail: pavlo.khylynskyi@lnu.edu.ua

We follow the terminology of [2, 4, 5]. For any positive integer j the semigroup $\mathbb{I}\mathbb{N}_{\infty}^{g[j]}$ is called the monoid of cofinite isometries of positive integers with the noise j. It was introduced in [4].

Any inverse semigroup S admits the minimum group congruence \mathfrak{C}_{mg} :

 $a\mathfrak{C}_{\mathbf{mg}}b$ if and only if there exists $e \in E(S)$ such that ea = eb.

Proposition 1. Let γ and δ be elements of the monoid $\mathbb{N}^{g[j]}_{\infty}$. Then $\gamma \mathfrak{C}_{\mathbf{mg}} \delta$ in $\mathbb{N}^{g[j]}_{\infty}$ if and only if $n_{\gamma}^{\mathbf{r}} - n_{\gamma}^{\mathbf{d}} = n_{\delta}^{\mathbf{r}} - n_{\delta}^{\mathbf{d}}$. Moreover, the quotient semigroup $\mathbf{IN}_{\infty}^{g[j]}/\mathfrak{C}_{\mathbf{mg}}$ is isomorphic to the additive group of integers $\mathbb{Z}(+)$ by the map

$$\pi_{\mathfrak{C}_{\mathbf{mg}}} \colon \mathbf{IN}_{\infty}^{\mathbf{g}[j]} \to \mathbb{Z}(+), \quad \gamma \mapsto n_{\delta}^{\mathbf{r}} - n_{\delta}^{\mathbf{d}}.$$

Example 2. We put $\mathcal{C}\mathbf{I}\mathbb{N}_{\infty}^{g[j]} = \mathbf{I}\mathbb{N}_{\infty}^{g[j]} \sqcup \mathbb{Z}(+)$ and extend the multiplications from $\mathbf{I}\mathbb{N}_{\infty}^{g[j]}$ and $\mathbb{Z}(+)$ onto $\mathcal{C}\mathbf{I}\mathbb{N}_{\infty}^{\boldsymbol{g}[j]}$ in the following way:

$$k \cdot \gamma = \gamma \cdot k = k + (\gamma)\pi_{\mathfrak{C}_{\mathbf{mg}}} \in \mathbb{Z}(+), \quad \text{for all} \quad k \in \mathbb{Z}(+) \quad \text{and} \quad \gamma \in \mathbf{IN}_{\infty}^{\mathbf{g}[j]}.$$

Theorem 3. For any positive integer j every Hausdorff shift-continuous topology τ on $\mathbb{IN}_{\infty}^{g[j]}$ is discrete.

Proposition 4. Let j be any positive integer and $\mathbb{N}^{g[j]}_{\infty}$ be a proper dense subsemigroup of a Hausdorff semitopological semigroup S. Then $I = S \setminus \mathbb{IN}_{\infty}^{g[j]}$ is a closed ideal of S.

Theorem 5. Let j be any positive integer and $\mathbf{IN}_{\infty}^{\mathbf{g}[j]}$ be a proper dense subsemigroup of a Hausdorff topological inverse semigroup S. Then $I = S \setminus \mathbf{IN}_{\infty}^{\mathbf{g}[j]}$ is a topological group.

Corollary 6. Let j be any positive integer and $\mathbb{IN}_{\infty}^{g[j]}$ be a proper dense subsemigroup of a Hausdorff topological inverse semigroup S. Then the group $S \setminus \mathbb{IN}_{\infty}^{g[j]}$ contains a dense cyclic subgroup.

Example 7. Let $\mathcal{C}\mathbf{IN}_{\infty}^{g[j]}$ be a semigroup defined in Example 2. Put M be an arbitrary subset of $\{2,\ldots,j\}$. We define the topology τ_{lc}^M on $\mathcal{C}\mathbf{IN}_{\infty}^{g[j]}$ in the following way:

- (i) all elements of the monoid $\mathbf{I}\mathbb{N}_{\infty}^{\boldsymbol{g}[j]}$ are isolated points in $(\mathcal{C}\mathbf{I}\mathbb{N}_{\infty}^{\boldsymbol{g}[j]}, \tau_{|c}^{M})$; (ii) for any $k \in \mathbb{Z}(+)$ the family $\mathscr{B}_{|c}^{M}(k) = \{U_{i}^{M}(k) : i \in \mathbb{N}\}$, where

$$U_i^M(k) = \{k\} \cup \{\gamma \in \mathcal{C}\mathbf{IN}_{\infty}^{g[j]}[M] : k \leq \gamma \text{ and } n_{\gamma}^{\mathbf{d}} \geqslant i\},$$

is the base of the topology $\tau_{|c|}^{M}$ at the point $k \in \mathbb{Z}(+)$.

Theorem 8. Let j be any positive integer and $\mathbb{IN}_{\infty}^{g[j]}$ be a proper dense subsemigroup of a Hausdorff locally compact topological inverse semigroup (S,τ) . Then (S,τ) topologically isomorphic to the topological inverse semigroup $(\mathcal{C}\mathbf{IN}_{\infty}^{g[j]}, \tau_{lc}^{M})$ for some subset M of $\{2, \ldots, j\}$.

Corollary 9. For any positive integer j there exists (j-1)!+1 distinct topologically non-isomorphic Hausdorff locally compact semigroup inverse topologies on the monoid $\mathcal{C}\mathbf{IN}_{\infty}^{g[j]}$.

The obtained results generalize the corresponding results of the papers [1] and [3].

References

- [1] M. O. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, *Proc. Roy. Irish Acad.* A76(21–23), 219–226, 1976.
- [2] J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The Theory of Topological Semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.
- [3] C. Eberhart and J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. 144, 115-126, 1969.
- [4] O. Gutik and A. Savchuk, On the monoid of cofinite partial isometries of N with the usual metric, Visn. Lviv. Univ., Ser. Mekh.-Mat. 89, 17-30, 2020.
- [5] M. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, Singapore: World Scientific, 1998.