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The theory of multidimensional quasiconformal mappings employs three main approaches: analytic,
geometric (modulus) and metric ones. In this talk, we use the last approach and establish the relation-
ship between various classes of mappings on Riemannian manifolds including homeomorphisms of �nite
metric distortion (FMD-homeomorphisms), �nitely bi-Lipschitz, quasisymmetric and quasiconformal
mappings. The appropriate classes of homeomorphisms involving the modulus technique are also pre-
sented. One of the main results shows that FMD-homeomorphisms are lower Q-homeomorphisms. As
an application, there are obtained some su�cient conditions for boundary extensions of FMD-homeo-
morphisms. These conditions are illustrated by several examples of FMD-homeomorphisms.

A classical example of signi�cance of metric approach can be illustrated by the Bohr-Mencho�-
Trokhymchuk theory on analyticity (monogeneity) of a complex variable function. In 1937 Mencho�
[2] generalized the Bohr theorem [1] on analytic functions in the terms of preserving in�nitesimal
circles. More precisely, for a continuous and locally univalent mapping w = f(z) of a domain D onto
a domain D∗ and z0 ∈ D, take the quantity

H(z0, r) =

max
|z′−z0|=r

|f(z′)− f(z0)|

min
|z′′−z0|=r

|f(z′′)− f(z0)|

and say that f preserves in�nitesimal circles in D if H(z0, r) → 1 as r → 0. The Mencho� result
states that the preserving in�nitesimal circles at all z0 except for at most a countable set completely
provides that either f or its conjugate is analytic in D. This pure metric condition has been extended to
continuous mappings by Yu. Yu. Trokhymchuk [3] involving the Stoilow theory on interior mappings.

The classes of mappings presented in the talk can be treated as far advanced extensions of the
Bohr-Mencho�-Trokhymchuk theory on complex plane to more general structures.
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