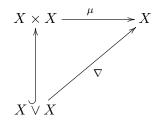
ON HOMOTOPY NILPOTENCY OF MOORE SPACE

Marek Golasiński (University of Warmia and Mazury, Olsztyn, Poland) *E-mail:* marekg@matman.uwm.edu.pl

Given based spaces X_1, X_2 , we use the customary notations $X_1 \times X_2$ for their Cartesian product, $X_1 \vee X_2$ for their wedge and $X_1 \wedge X_2$ for the smash product of X_1, X_2 .

Recall that an *H*-space is a pair (X, μ) , where X is a space and $\mu : X \times X \to X$ is a map such that the diagram



commutes up to homotopy, where $\nabla : X \vee X \to X$ is the folding map. An *H*-space *X* is called a *group-like space* if *X* satisfies all the axioms of groups up to homotopy. From now on, we assume that any *H*-space *X* is group-like. For an *H*-space *X*, we write $\varphi_{X,1} = \iota_X, \varphi_{X,2} : X \times X \to X$ for the basic commutator map and $\varphi_{X,n+1} = \varphi_{X,2} \circ (\varphi_{X,n} \times \iota_X)$ for $n \geq 2$.

The *nilpotency class* nil (X, μ) of an *H*-space (X, μ) is the least integer $n \ge 0$ for which the map $\varphi_{X,n+1} \simeq *$ is nullhomotopic and we call the homotopy associative *H*-space *X* homotopy nilpotent. If no such integer exists, we put nil $(X, \mu) = \infty$. In the sequel, we simply write nil *X* for the nilpotency class of an *H*-space *X*.

In virtue of [2, 2.7, Theorem], we have

Theorem 1. If X is an H-space then

$$\operatorname{nil} X = \sup_{m} \operatorname{nil}[X^{m}, X] = \sup_{m} \operatorname{nil}[X^{\wedge m}, X] = \sup_{Y} \operatorname{nil}[Y, X],$$

where m ranges over all integers and Y over all topological spaces.

Then, by means of [8, Lemma 2.6.1], we may state

Corollary 2. A connected H-space X is homotopy nilpotent if and only if the functor [-, X] on the category of all spaces is nilpotent group valued.

With any based space X, we associate the integer nil $\Omega(X)$ called the *nilpotency class* of X for the loop space $\Omega(X)$ on X. Although many results on the homotopy nilpotency have been obtained, the homotopy nilpotency classes have been determined in very few cases.

Example 3. (1) It is well-known that

$$\operatorname{nil} \Omega(\mathbb{S}^n) = \begin{cases} 3 \text{ for } n \text{ even with } n \neq 2; \\ 2 \text{ for } n \text{ odd with } n \neq 1, 3, 7 \text{ or } n = 2; \\ 1 \text{ for } n = 1, 3, 7 \end{cases}$$

for the *n*-sphere \mathbb{S}^n .

(2) For the wedge $\mathbb{S}^m \vee \mathbb{S}^n$ of two spheres with $m, n \geq 2$, we have

$$\operatorname{nil}\Omega(\mathbb{S}^m\vee\mathbb{S}^n)=\infty.$$

Write $\mathbb{K}P^m$ for the projective *m*-space for $\mathbb{K} = \mathbb{R}$, \mathbb{C} , the field of reals or complex numbers and \mathbb{H} , the skew \mathbb{R} -algebra of quaternions. Then, results from [6] have been applied in [3] to study extensively the homotopy nilpotency of the loop spaces of Grassmann and Stiefel manifolds over \mathbb{K} , and their *p*-localization.

Let $\mathbb{S}_{(p)}^{2m-1}$ be the *p*-localization of the sphere \mathbb{S}^{2m-1} at a prime *p*. The main result of the paper [4] is the explicit determination of the homotopy nilpotence class of a wide range of homotopy associative multiplications on localized spheres $\mathbb{S}_{(p)}^{2m-1}$ for p > 3.

Next, let A be an Abelian group and n any integer ≥ 2 . A CW-complex X satisfying $\pi_j(X) = 0$ for $j < n, \pi_n(X) \approx A$ and $H_i(X) = 0$ for i > n is known as a Moore space of type (A, n), or simply an M(A, n) space. By [7], it is known that a Moore space M(A, n) with $n \geq 2$ exists and, in view of [5, Example 4.34], the homotopy type of a Moore space M(A, n) is uniquely determined by A and $n \geq 2$. This implies that every Moore space M(A, n) with $n \geq 3$, is the suspension $\Sigma M(A, n - 1)$. Furthermore, in [1, Section 2], it was shown that also M(A, 2) is the suspension $\Sigma L(A)$ for some CW-complex L(A).

Now, we examine the homotopy nilpotency of M(A, n) with ≥ 2 . Notice that $\mathbb{S}^n = M(\mathbb{Z}, n)$ and the wedge $\mathbb{S}^n \vee \mathbb{S}^n = M(\mathbb{Z} \oplus \mathbb{Z}, n)$ for the integers \mathbb{Z} . Then, by Example 3, we have that nil $\Omega(\mathbb{S}^n) \leq 3$ but nil $\Omega(\mathbb{S}^n \vee \mathbb{S}^n) = \infty$ for $n \geq 2$.

First, we show the general fact

Proposition 4. If the reduced homology $H_*(X, \mathbb{F})$ has at least two primitive generators, where \mathbb{F} is a field then $\Omega\Sigma(X)$ is not homotopy nilpotent.

Then, we state the main resut

Theorem 5. Let $m \ge 1$, $n_1, \ldots, n_m \ge 2$ and $M(A_k, n_k)$ be Moore spaces of type (A_k, n_k) for $k = 1, \ldots, m$. Then:

(1) nil $\Omega((M(A_1, n_1) \times \cdots \times (M(A_m, n_m))) < \infty$ if and only if if A_k are torsion-free groups with rank $r(A_k) = 1$ for $k = 1, \ldots, m$;

(2) $\operatorname{nil} \Omega((M(A_1, n_1) \lor \cdots \lor M(A_m, n_m)) < \infty$ if and only if m = 1 and A_1 is a torsion-free group with rank $r(A_1) = 1$.

In particular, we derive

Corollary 6. If M(A, n) is a Moore space with $n \ge 2$ then

$$\operatorname{nil}\Omega(M(A,n)) < \infty$$

if and only if A is a torsion-free group with rank r(A) = 1 or equivalently, A is a subgroup of the rationals \mathbb{Q} .

References

- Arkowitz, M. and Golasiński, M., On co-H-structures on Moore spaces of type (G, 2), Can. J. Math., vol. 46 (4) (1994), 673-686.
- [2] Berstein, I. and Ganea, T., Homotopical nilpotency, Illinois J. Math. 5 (1961), 99-130.
- Golasiński, M., The homotopy nilpotency of some homogeneous spaces, Manuscripta Math. (2021), https://doi.org/10.1007/s00229-021-01273-y.
- [4] Golasiński, M., Homotopy nilpotency of localized spheres and projective spaces, Proc. Edinb. Math. Soc. (2) (accepted).
- [5] Hatcher, A., "Algebraic Topology", Cambridge University Press (2002).
- [6] Hopkins, M.J., Nilpotence and finite H-spaces, Israel J. Math. 66, no. 1-3 (1989), 238-246.
- [7] Moore, J.C., On homotopy groups of spaces with a single nonvanishing homology group, Ann. of Math. 59, (1954), 549-557.
- [8] Zabrodsky, A., "Hopf Spaces", North-Holland Publishing Company (1976).