On Orthosymmetric n-morphisms

Omer GOK

(Yildiz Technical University, Faculty of Arts and Sciences, Mathematics Department, Esenler, Istanbul, TURKEY) *E-mail:* gok@yildiz.edu.tr

Let E and F be vector lattices. We say that a bilinear mapping $T: E \times E \to F$ is an orthosymmetric mapping if T(x, y) = 0 in F, whenever $|x| \wedge |y| = 0$ in E. Generalization of this definition for n linear mapping is that $T: E \times E \times ... \times E \to F$ is an orthosymmetric multilinear mapping if $T(x_1, x_2, ..., x_n) = 0$ for all $x_1, ..., x_n \in E$ such that $|x_i| \wedge |x_j| = 0$ for some pair of indices $1 \leq i, j \leq n$. By E^{\sim} we denote the set of all order bounded linear functionals on E. E_n^{\sim} denotes the set of all order continuous linear functionals on E. By $(E^{\sim})_n^{\sim}$ we denote the order continuous order bidual of E. Let $E_1, ..., E_n$ and F be vector lattices. A multilinear mapping $\Psi: E_1 \times ... \times E_n \to F$ is said to be a lattice n-morphism if $|\Psi(x_1, ..., x_n)| = \Psi(|x_1|, ..., |x_n|)$ for all $x_i \in E_i$ for i = 1, 2, ..., n. We say that a lattice n-morphism and orthosymmetric multilinear mapping is an orthosymmetric n-morphism.

Orthosymmetric bilinear mappings have been studied by a lot of authors. For example, M.A. Toumi and R. Yilmaz give the extensions of orthosymmetric bilinear mapping to the order continuous order bidual of a vector lattice by using Arens multiplication.

In this study, we extend an orthosymmetric n-morphism to the order continuous order bidual of a vector lattice by using Arens product. We show that an extension of orthosymmetric n-morphism is again orthosymmetric n-morphism. Unexplained notion and terminology we refer to the following references.

Theorem 1. Suppose that E is an Archimedean vector lattice and F is a Dedekind complete vector lattice. If $\Psi : E \times E \times ... \times E \to F$ is an orthosymmetric n-morphism, then n-th order adjoint of Ψ on the order continuous order bidual $(E^{\sim})_{n}^{\sim}$ of E is again an orthosymmetric n-morphism.

References

[1] C.D. Aliprantis, O. Burkinshaw. Positive Operators Academic Press, London, 1985.

[2] R. Arens. The adjoint of a bilinear operation. Proc. Am. Math. Soc., 2, 839-848, 1951.

[3] R. arens. Operations induced in function classes. Monatsh. fur Math., 55,1-19, 1951.

[4] Z. Kusraeva. Sums of disjointness preserving multilinear operators. Positivity, 2020.

[5] M. A. Toumi. The triadjoint of an orthosymmetric bimorphism. Czechoslovak Math. J., 60, 85-94, 2010.

[6] R.Yilmaz. The Arens triadjoints of some bilinear maps. Filomat, 28, 963-979, 2014.