DEFORMATIONS OF CIRCLE-VALUED MORSE FUNCTIONS ON 2-TORUS

Bohdan Feshchenko (Institute of Mathematics of NAS of Ukraine) *E-mail:* fb@imath.kiev.ua

Let M be a smooth compact surface, X be a closed (possible empty) subset of M. By P we also denote either \mathbb{R} or S^1 . The group $\mathcal{D}(M, X)$ of diffeomorphisms of M fixed on X acts from the right on the space of smooth maps $C^{\infty}(M, P)$ by the rule

$$\gamma: C^{\infty}(M, P) \times \mathcal{D}(M, X) \to C^{\infty}(M, P), \qquad \gamma(f, h) = f \circ h.$$

With respect to γ we denote by

$$\mathcal{S}(f, X) = \{h \in \mathcal{D}(M, X) \mid f \circ h = f\},\$$

$$\mathcal{O}(f, X) = \{f \circ h \mid h \in \mathcal{D}(M, X)\}$$

the stabilizer and the orbit of $f \in C^{\infty}(M, P)$. Endow strong Whitney C^{∞} -topologies on $C^{\infty}(M, P)$ and $\mathcal{D}(M, X)$; then for a map $f \in C^{\infty}(M, P)$ these topologies induce some topologies on $\mathcal{S}(f, X)$ and $\mathcal{O}(f, X)$. We denote by $\mathcal{D}_{id}(M, X)$ a connected component of the identity map $\mathcal{D}(M, X)$, and by $\mathcal{O}_f(f, X)$ a connected component of $\mathcal{O}(f, X)$ containing f. If $X = \emptyset$ we omit the symbol " \emptyset " from our notation.

To state our main result we need a notion of wreath product of groups of a special kind. Let G be a group, $n \ge 1$ be an integer. A semi-direct product $G^n \rtimes \mathbb{Z}$ with respect to a non-effective \mathbb{Z} -action α on G^n by cyclic shifts

$$\alpha(b_0, b_1, \dots, b_{n-1}; k) = (b_k, b_{1+k}, \dots, b_{n+k-1}),$$

where all indexes are taken modulo n, will be denoted by $G \wr_n \mathbb{Z}$ and called a *wreath product* of G with \mathbb{Z} under n.

The following theorem is our main result.

Theorem 1 ([1]). Let f be a function from $\mathcal{F}(T^2, P)$ with at least one critical point and whose Kronrod-Reeb graph contains a cycle. Then there exist a cylinder $Q \subset T^2$ such that $f|_Q : Q \to P$ is a Morse function, $n \in \mathbb{N}$ such that there is an isomorphism

$$\pi_1 \mathcal{O}_f(f) \cong \pi_0 \mathcal{S}'(f|_Q, \partial Q) \wr_n \mathbb{Z},$$

where $\mathcal{S}'(f|_Q, \partial Q) = \mathcal{S}(f|_Q, \partial Q) \cap \mathcal{D}_{\mathrm{id}}(Q, \partial Q).$

References

 Bohdan Feshchenko. Deformations of circle-valued Morse functions on 2-torus. Submitted to Proceedings of the International Geometry Center, arXiv2104.06151