PROBLEM ON EXTREMAL DECOMPOSITION OF THE COMPLEX PLANE

Aleksandr Bakhtin, Iryna Denega

(Institute of mathematics of the National Academy of Sciences of Ukraine, Complex analysis and potential theory Department, 3 Tereschenkivska St, Kyiv, Ukraine, 01024)

E-mail: abahtin@imath.kiev.ua, iradenega@gmail.com

Let \mathbb{N} , \mathbb{R} be the sets of natural and real numbers, respectively, let \mathbb{C} be the complex plane, and let $\overline{\mathbb{C}} = \mathbb{C} \bigcup \{\infty\}$ be its one-point compactification, $\mathbb{R}^+ = (0, \infty)$. Let r(B, a) be the inner radius of the domain $B \subset \overline{\mathbb{C}}$ relative to a point $a \in B$. The inner radius of the domain B is connected with Green's generalized function $g_B(z, a)$ of the domain B by the relations

$$g_B(z,a) = -\ln|z-a| + \ln r(B,a) + o(1), \quad z \to a, g_B(z,\infty) = \ln|z| + \ln r(B,\infty) + o(1), \quad z \to \infty.$$

Definition 1. Let $n \in \mathbb{N}$, $n \ge 2$. The system of points $A_n := \{a_k \in \mathbb{C} : k = \overline{1, n}\}$ is called *n*-ray, if $|a_k| \in \mathbb{R}^+$ for $k = \overline{1, n}$ and $0 = \arg a_1 < \arg a_2 < \ldots < \arg a_n < 2\pi$.

Denote
$$\alpha_k := \frac{1}{\pi} \arg \frac{a_{k+1}}{a_k}, \ \alpha_{n+1} := \alpha_1, \ k = \overline{1, n}, \ \sum_{k=1}^n \alpha_k = 2.$$

Problem 2. (V.N. Dubinin [1, 2]) For all values of the parameter $\gamma \in (0, n]$ to show that the maximum of the functional

$$I_n(\gamma) = r^{\gamma} (B_0, 0) \prod_{k=1}^n r(B_k, a_k),$$

where B_0 , B_1 , B_2 ,..., B_n , $n \ge 2$, are pairwise disjoint domains in $\overline{\mathbb{C}}$, $a_0 = 0$, $|a_k| = 1$, $k = \overline{1, n}$, is attained for the configuration of domains B_k and points a_k which possesses the *n*-fold symmetry.

In work [1], the above-formulated problem was solved for the value of the parameter $\gamma = 1$ and all values of the natural parameter $n \ge 2$. Namely, it was shown that the following inequality holds

$$r(B_0, 0) \prod_{k=1}^n r(B_k, a_k) \leqslant r(D_0, 0) \prod_{k=1}^n r(D_k, d_k),$$

where d_k , D_k , $k = \overline{0, n}$, are the poles and circular domains of the quadratic differential

$$Q(w)dw^{2} = -\frac{(n^{2}-1)w^{n}+1}{w^{2}(w^{n}-1)^{2}} dw^{2}.$$

In work [3], L.V. Kovalev got its solution for definite sufficiently strict limitations on the geometry of arrangement of the systems of points on a unit circle, namely, for systems of points for which the following inequalities hold

$$0 < \alpha_k \leq 2/\sqrt{\gamma}, \quad k = \overline{1, n}, \quad n \ge 5.$$

In work [4], it was shown that the result by L.V. Kovalev is true for n = 4. The solution of this problem for $\gamma \in (0, 1]$ was given in work [5]. Some partial cases of this problem were studied, for example, in [6–10].

For the further analysis, we calculate the quantity

$$I_n^0(\gamma) = r^{\gamma} (D_0, 0) \prod_{k=1}^n r (D_k, d_k) ,$$

where d_k , D_k , $k = \overline{0, n}$, $d_0 = 0$, are, respectively, the poles and circular domains of the quadratic differential

$$Q(w)dw^{2} = -\frac{(n^{2} - \gamma)w^{n} + \gamma}{w^{2}(w^{n} - 1)^{2}} dw^{2}.$$

As was shown in [1, 2, 3, 6], the quantity $I_n^0(\gamma)$ takes the form

$$I_n^0(\gamma) = \left(\frac{4}{n}\right)^n \frac{\left(\frac{4\gamma}{n^2}\right)^{\frac{1}{n}}}{\left(1 - \frac{\gamma}{n^2}\right)^{n + \frac{\gamma}{n}}} \left(\frac{1 - \frac{\sqrt{\gamma}}{n}}{1 + \frac{\sqrt{\gamma}}{n}}\right)^{2\sqrt{\gamma}}$$

Theorem 3. [9] Let $\gamma \in (1, 2]$. Then, for any different points a_1 and a_2 of a unit circle and any mutually disjoint domains B_0 , B_1 , B_2 , $a_1 \in B_1 \subset \overline{\mathbb{C}}$, $a_2 \in B_2 \subset \overline{\mathbb{C}}$, $a_0 = 0 \in B_0 \subset \overline{\mathbb{C}}$, the inequality

$$r^{\gamma}(B_0, 0) r(B_1, a_1) r(B_2, a_2) \leqslant I_2^0(\gamma) \left(\frac{1}{2} |a_1 - a_2|\right)^{2-\gamma}$$

is true. The sign of equality in this inequality is attained, when the points a_0 , a_1 , a_2 and the domains B_0 , B_1 , B_2 are, respectively, the poles and circular domains of the quadratic differential

$$Q(w)dw^{2} = -\frac{(4-\gamma)w^{2}+\gamma}{w^{2}(w^{2}-1)^{2}}dw^{2}.$$

Remark 4. Theorem 3 yields the complete solution of the above-posed problem of finding the maximum of product of inner radii of two domains relative to the points of a unit circle on the degree γ of the inner radius of the domain relative to the origin at arbitrary $\gamma \in (0, 2]$, provided that all three domains are mutually non-overlapping domains.

Theorem 5. [9] Let $n \in \mathbb{N}$, $n \ge 3$, $\gamma \in (1, n]$. Then, for any system of different points $A_n = \{a_k\}_{k=1}^n \in \mathbb{C} \setminus \{0\}$ of a unit circle and for any collection of mutually disjoint domains B_0 , B_k , $a_0 = 0 \in B_0 \subset \overline{\mathbb{C}}$, $a_k \in B_k \subset \overline{\mathbb{C}}$, $k = \overline{1, n}$, the following inequality holds

$$r^{\gamma}(B_0,0)\prod_{k=1}^n r(B_k,a_k) \leqslant \left(\sin\frac{\pi}{n}\right)^{n-\gamma} \left(I_2^0\left(\frac{2\gamma}{n}\right)\right)^{\frac{n}{2}}.$$

References

- [1] Dubinin V.N. Symmetrization method in geometric function theory of complex variables. *Russian Math. Surveys*, 1 : 1–79, 1994.
- [2] Dubinin V.N. Condenser capacities and symmetrization in geometric function theory. Birkhäuser/Springer, Basel, 2014.
- [3] Kovalev L.V. On the problem of extremal decomposition with free poles on a circle. *Dal'nevostochnyi Mat. Sb.*, (2): 96–98, 1996. (in Russian)
- [4] Bakhtin A.K., Denega I.V. Addendum to a theorem on extremal decomposition of the complex plane. Bulletin de la société des sciences et des lettres de Lódź, Recherches sur les déformations, 62(2): 83-92, 2012.
- [5] Kuz'mina G.V. The Method of Extremal Metric in Extremal Decomposition Problems with Free Parameters. J. Math. Sci., 129(3): 3843-3851, 2005.
- [6] Bakhtin A.K., Bakhtina G.P., Zelinskii Yu.B. Topological-algebraic structures and geometric methods in complex analysis. Zb. prats of the Inst. of Math. of NASU, 2008. (in Russian).
- Bakhtin A.K. Separating transformation and extremal problems on nonoverlapping simply connected domains. J. Math. Sci., 234(1): 1-13, 2018.
- [8] Bakhtin A.K. Extremal decomposition of the complex plane with restrictions for free poles. J. Math. Sci., 231(1): 1-15, 2018.
- [9] Bakhtin A.K., Denega I.V. Extremal decomposition of the complex plane with free poles. J. Math. Sci., 246(1) : 1–17, 2020.
- [10] Tamrazov P.M. Extremal conformal mappings and poles of quadratic differentials. Mathematics of the USSR-Izvestiya, 2(5): 987-996, 1968.