EVERY 2-DIMENSIONAL BANACH SPACE HAS THE MAZUR-ULAM PROPERTY

Taras Banakh

(Ivan Franko National University of Lviv) *E-mail:* t.o.banakh@gmail.com

A Banach space X is defined to have the Mazur–Ulam property if for every Banach space Y every isometry $f: S_X \to S_Y$ between the unit spheres of X, Y extends to a linear isometry of the spaces X, Y. In 1987 Tingley posed a (still open) problem if every Banach space has the Mazur-Ulam property. It has been shown that many classical Banach spaces (like C(K), $\ell_p(\Gamma)$, $L_p(\mu)$) do have the Mazur-Ulam property. The main result of the talk is the following solution of the Tingley problem in dimension 2.

Theorem 1. Every 2-dimensional Banach space has the Mazur–Ulam property.

$\operatorname{References}$

- [1] T. Banakh, Every 2-dimensional Banach space has the Ulam-Mazur property, preprint (arxiv.org/abs/2103.09268).
- [2] T.Banakh, J. Cabello Sanchez, Every non-smooth 2-dimensional Banach space has the Ulam-Mazur property, Linear Algebra Appl. 625 (2021) 1–19.
- [3] T. Banakh, Any isometry between the spheres of absolutely smooth 2-dimensional Banach spaces is linear, J. Math. Analysis Appl. 500:1 (2021) 125104.