FINITELY BI-LIPSCHITZ HOMEOMORPHISMS BETWEEN FINSLER MANIFOLDS

Elena Afanas'eva

(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, 1 Dobrovol'skogo St.,

Slavyansk 84100, Ukraine)

E-mail: es.afanasjeva@gmail.com

In this talk we investigate the boundary behavior of finitely bi-Lipschitz homeomorphisms between Finsler manifolds. Our study involves the module technique and classes of mappings whose moduli of the curve/surface families are integrally controlled from above and below. The Lusin (N)-property with respect to the k-dimensional Hausdorff measure for the finitely bi-Lipschitz mappings is also established. The talk is based on a joint work with A. Golberg; see [1].

Let M be an n-dimensional differentiable manifold, n > 2. By the differentiability we mean C^{∞} differentiability. For a point $x \in \mathbb{M}$, $T_x \mathbb{M}$ denotes the tangent space at x, and $T\mathbb{M} := \bigcup_{x \in \mathbb{M}} T_x \mathbb{M}$ is the tangent bundle. The *Finsler manifold* is a differentiable manifold \mathbb{M} equipped the Finsler metric $\Phi(x,\xi): T\mathbb{M} \to \mathbb{R}^+$ satisfying the conditions:

(i) regularity: $\Phi \in C^{\infty}$ on $T\mathbb{M}_0 := T\mathbb{M} \setminus \{0\};$

(ii) positive homogeneity: Φ is positive homogeneous that is $\Phi(x, a\xi) = a\Phi(x, \xi)$ for all positive $a \in R$ and $\Phi(x,\xi) > 0$ for $\xi \neq 0$;

(iii) the Legendre condition or strong convexity condition: $g_{ij}(x,\xi) = \frac{1}{2} \frac{\partial^2 \Phi^2(x,\xi)}{\partial \xi^i \partial \xi^j}$ is positive definite whenever $\xi \neq 0$.

Following [3], an element of *volume* on the Finsler manifold is defined by $d\sigma_{\Phi}(x) := \frac{|B^n|}{|B^n_x|} dx^1 ... dx^n$, where $|B^n|$ denotes the Euclidean volume of the unit *n*-ball whereas $|B^n_x|$ is the Euclidean volume of the set $B_x^n = \left\{ (\xi^1, ..., \xi^n) \in \mathbb{R}^n : \Phi\left(x, \sum_{i=1}^n (\xi^i, e_i(x))\right) < 1 \right\}$ with an arbitrary basis $\{e_i(x)\}_{i=1}^n$ in \mathbb{R}^n depending on x.

Suppose that D and D' are two domains on \mathbb{M} and \mathbb{M}' , respectively, $f: D \to D'$ is a continuous mapping. Let $L(x, f) = \limsup_{y \to x} \frac{d_{\Phi'}(f(x), f(y))}{d_{\Phi}(x, y)}, x \in D$ and $l(x, f) = \liminf_{y \to x} \frac{d_{\Phi'}(f(x), f(y))}{d_{\Phi}(x, y)}$. Following [2], we say that $f: D \to D'$ is finitely Lipschitz if $L(x, f) < \infty$ for all $x \in D$ and finitely

bi-Lipschitz if

$$0 < l(x, f) \le L(x, f) < \infty$$

for all $x \in D$.

A Borel function $\rho: \mathbb{M} \to [0, \infty]$ is called *admissible* for the family Γ of k-dimensional surfaces S in $\mathbb{M}, k = 1, \ldots, n - 1$, (abbr. $\rho \in \operatorname{adm} \Gamma$), if

$$\int_{S} \rho^{k} d\mathcal{A}_{\Phi} \ge 1, \quad \forall \ S \in \Gamma.$$
(1)

Following [2], the function $\rho: \mathbb{M} \to [0,\infty]$ measurable with respect to the measure of a volume σ_{Φ} is called *extensively admissible* for a family Γ of k-dimensional surfaces S in M (abbr. $\rho \in \text{ext} \text{ adm} \Gamma$), if the admissibility condition (1) holds for almost all (a.a.) $S \in \Gamma$.

The conformal module or module (called also the conformal modulus) of a family Γ of k-dimensional surfaces in D is defined by

$$M(\Gamma) := \inf_{\rho \in \operatorname{adm} \Gamma} \int_{D} \rho^{n}(x) \, d\sigma_{\Phi}(x),$$

where D is a domain in \mathbb{M} .

Let $Q : \mathbb{M} \to (0, \infty)$ be a measurable function. A homeomorphism $f : D \to D'$ is called *lower* Q-homeomorphism at a point $x_0 \in \overline{D}$, if there exists $\delta_0 \in (0, d(x_0)), d(x_0) := \sup_{x \in D} d_{\Phi}(x, x_0)$, such that for any $\varepsilon_0 < \delta_0$ and any geodesic rings $A_{\varepsilon} = A(x_0, \varepsilon, \varepsilon_0) = \{x \in \mathbb{M} : \varepsilon < d_{\Phi}(x, x_0) < \varepsilon_0\}, \varepsilon \in (0, \varepsilon_0)$, the inequality

$$M(f(\Sigma_{\varepsilon})) \geq \inf_{\rho \in \text{ext adm } \Sigma_{\varepsilon}} \int_{D \cap A_{\varepsilon}} \frac{\rho^{n}(x)}{Q(x)} \, d\sigma_{\Phi}(x)$$
(2)

holds. Here Σ_{ε} stands for the family of all intersections of the geodesic spheres $S(x_0, r) = \{x \in \mathbb{M} : d_{\Phi}(x, x_0) = r\}, r \in (\varepsilon, \varepsilon_0)$, with the domain D. We say that the homeomorphism $f : D \to D'$ is a lower *Q*-homeomorphism in D, if f is lower *Q*-homeomorphism at every point $x_0 \in \overline{D}$.

For sets A, B and C, we denote by $\Delta(A, B; C)$ the set of all curves $\gamma : [a, b] \to \mathbb{M}$, which join A and B in C, i.e. $\gamma(a) \in A, \gamma(b) \in B$ and $\gamma(t) \in C$ for all $t \in (a, b)$.

Let $Q : \mathbb{M} \to (0, \infty)$ be a measurable function. We say that a homeomorphism $f : D \to D'$ is ring *Q*-homeomorphism at a point $x_0 \in \overline{D}$, if

$$M\left(\Delta(f(K), f(K_0); D')\right) \leq \int_{D \cap A_{\varepsilon}} Q(x) \cdot \eta^n \left(d_{\Phi}(x, x_0)\right) d\sigma_{\Phi}(x)$$
(3)

holds for any geodesic ring $A_{\varepsilon} = A(x_0, \varepsilon, \varepsilon_0), \ 0 < \varepsilon < \varepsilon_0 < \infty$, any two continua (compact connected sets) $K \subset \overline{B(x_0, \varepsilon)} \cap D$ and $K_0 \subset D \setminus B(x_0, \varepsilon_0)$ and each Borel function $\eta : (\varepsilon, \varepsilon_0) \to [0, \infty]$, such that $\int_{\varepsilon}^{\varepsilon_0} \eta(r) dr = 1$. We say that f is a ring Q-homeomorphism in D, if (3) holds for all points $x_0 \in \overline{D}$.

Recall that a metric space \mathbb{M} is called *hyperconvex* if $\bigcap_{\alpha \in \Lambda} \overline{B}(x_{\alpha}, r_{\alpha}) \neq \emptyset$ for any collection of points $\{x_{\alpha}\}_{\alpha \in \Lambda}$ in \mathbb{M} and positive numbers $\{r_{\alpha}\}_{\alpha \in \Lambda}$ such that $d(x_{\alpha}, x_{\beta}) \leq r_{\alpha} + r_{\beta}$ for any α and β in Λ .

The main result of talk is following

Theorem 1. ([1]) Let D and D' be two domains in Finsler n-dimensional manifolds (\mathbb{M}, Φ) and (\mathbb{M}', Φ') , respectively, $n \geq 2$, and let \mathbb{M}' be a hyperconvex space. If $f : D \to D'$ is a finitely bi-Lipschitz homeomorphism then f is both lower Q-homeomorphism with $Q = K_I^{\frac{1}{n-1}}(x, f)$ and ring Q_* -homeomorphism with $Q_* = C \cdot K_I(x, f)$, where $K_I(x, f) \in L^1_{loc}$ stands for the inner dilatation of mapping f, and C is a constant arbitrarily close to 1.

References

- E. Afanas'eva and A. Golberg. Finitely bi-Lipschitz homeomorphisms between Finsler manifolds. Anal. Math. Phys, 10 (4), Paper No. 48: 2020, 16 pp.
- [2] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov. Moduli in Modern Mapping Theory. Springer Monographs in Mathematics. New York: Springer, 2009.
- [3] Z. Shen. On Finsler geometry of submanifolds. Math. Ann., 311 (3): 549-576, 1998.